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Today’s program

I Development of many-valued logics
t-norm based logics

I Gödel logics (propositional
quantified propositional, first order)

I Gödel logics and . . .
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I Topology
I Order Theory
I Computability

I Other topics
I Kripke frames and beyond the reals
I Monadic fragment
I Proof theory

I History
I Conclusion



Development of many-valued logics

The most important stops
I Platon, Aristoteles (De Interpretatione IX), Ockham: future

possibilities, problem of determination vs. fatalism.

I Łukasiewicz 1920: 3-valued logic of non-determinism
I Post 1920: Many-valued logic dealing with functional completion
I Gödel 1932: Finite valued logics for approximation of intuitionistic

logic
I Bočvar 1938: Logic of Paradoxa
I Kleene 1952: Logic of the unknown
I Zadeh 1965: Fuzzy sets and fuzzy logics
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I Bočvar 1938: Logic of Paradoxa
I Kleene 1952: Logic of the unknown
I Zadeh 1965: Fuzzy sets and fuzzy logics



How do we continue?

Arbitrary finite-valued logics

For all finite-valued logics with truth-value functions there is an
automatic algorithm for generating a sequent calculus, proving
completeness etc (MultLog, MultSeq: Baaz, Fermüller, Salzer, Zach et al.
1996ff).

Infinite valued logics

Does it make sense to take truth values from arbitrary partial orderings?

⇒ No, because every logics with substitution property would be a
many-valued logic!

Take all sentences as truth values, and all sentences of the logic as
designated truth values.
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Design decisions

Basic requirements
I Extension of classical logic
I [0, 1] as super-set of the truth value set
I functional relation between the truth value of a formula and the one

of its sub-formulas.

Additional ‘natural’ properties of the conjunction
I associative ((A∧ B)∧ C⇔ A∧ (B∧ C))
I commutative (A∧ B⇔ B∧A)
I order preserving

If A is less true than b, then A∧ C is less (or equal) true than B∧ C.
I continuous
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Definition of (continuous) t-norms

Definition

A t-norm is an associative, commutative, and monotone mapping from
[0, 1]2 → [0, 1] with 1 as neutral element.

I (x ? y) ? z = x ? (y ? z)

I x ? y = y ? x

I x 6 y ⊃ x ? z 6 y ? z

I 1 ? x = x

I ? is continuous

Algebraic view

〈[0, 1], ?, 1,6〉 is a commutative and ordered monoid.
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From t-norm to the logic

The residuum of a t-norm

Every t-norm has a residuum

x ? z 6 y ⇔ z 6 (x⇒ y)

x⇒ y := max{z : x ? z 6 y}

Truth functions for operators
I strong conjunction &: defined via the t-norm
I implication ⊃: defined via the residuum
I Negation: ¬A := A ⊃ ⊥
I (weak) disjunction: A∨ B := (A ⊃ B) ⊃ B
I (weak) conjunction: A∧ B := ¬(¬A∨ ¬B)

I strong disjunction: A
∨
B := ¬(A ⊃ ¬B)
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Representation of t-norm

Theorem (Mostert and Shields, 1957)

Every t-norm is the ordinal sum of Łukasiewicz t-norm and Product
t-norm.
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Questions and results

I Basic logic: the logic of all t-norms (Hajek 1998)
I Axiomatizability: propositional logic: easy, first-order: only Gödel

logics are axiomatizable (Scarpellini 1962, Horn 1969, Takeuti, Titani
1984, Takano 1987)

I calculi for propositional logic: sequent calculus for Gödel logic
(Avron 1991, hyper sequent calculus), Π- und Ł-Logik (Gabbay,
Metcalfe, Olivetti 2003).

I calculi for first order logic: only for Gödel logic (Baaz, Zach 2000)
I Game interpretation: Łukasiewicz Logic: interpretation via Ulam’s

games (Mundici, 1991-93), Gödel, Product, Łukasiewicz:
interpretation via Lorenzen style games (Giles 1970; Fermüller,
Metcalfe, Ciabattoni 2003-04)

I other questions: automatic theorem proving, size of families, . . .



Gödel Logics



Propositional Logics



Propositional logic

Usual propositional language, ¬A is defined as A ⊃ ⊥.

Evaluations

Fix a truth value set {0, 1} ⊆ V ⊆ [0, 1]

v maps propositional variables to elements of V

v(A∧ B) = min{v(A), v(B)}

v(A∨ B) = max{v(A), v(B)}

v(A ⊃ B) =

{
v(B) if v(A) > v(B)

1 if v(A) 6 v(B).



Negation

This yields the following definition of the semantics of ¬:

v(¬A) =

{
0 if v(A) > 0

1 otherwise



Takeuti’s observation

Gödel implication

v(A ⊃ B) =

{
v(B) if v(A) > v(B)

1 if v(A) 6 v(B).

is the only one satisfying:

I v(A) 6 v(B)⇔ v(A ⊃ B) = 1

I Π ∪ {A} 
 B⇔ Π 
 A ⊃ B

I Π 
 B⇒ min{v(A) : A ∈ Π} 6 v(B)
(and if Π = ∅ ⇒ 1 6 v(B))



Definition of the logic

GV = {A : ∀v into V : v(A) = 1}

Examples

V = {0, 1} → GV = CPL

V1 = {0, 1/2, 1}, V2 = {0, 1/3, 1} → GV1 = GV2
V↑ = {1− 1/n : n > 1} ∪ {1} → GV↑ = G↑

V↓ = {1/n : n > 1} ∪ {0} → GV↓ = G↓
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Propositional completeness

I Lindenbaum algebra of the formulas
I show that the algebra F/≡ is a subalgebra of

X =

n!∏
i=1

C(⊥, πi(p1, . . . , pn),>)

(C(. . .) being the chain consisting of the listed elements, and the πi
all the permutations) by defining

φ(|α|) = (|α|C1 , . . . , |α|Cn!)



Consequences

I countably many propositional Gödel logics

G2 ⊃ G3 ⊃ . . . ⊃ Gn ⊃ . . . ⊃ G↑ = G↓ = GV = G∞ =
⋂
n>2

Gn

(where V is any infinite truth value set)

I if f : V1 7→ V2 with f(0) = 0 and f(1) = 1, order-preserving
(x < y⇒ f(x) < f(y)), then

GV1 ⊇ GV2

I check on satisfiability and validity



Quantified Propositional Logics



Quantified

Propositional Logic

Fix a truth value set {0, 1} ⊆ V ⊆ [0, 1]

, V closed

v maps propositional variables to elements of V

v(A∧ B) = min{v(A), v(B)}

v(A∨ B) = max{v(A), v(B)}

v(A ⊃ B) =

{
v(B) if v(A) > v(B)

1 if v(A) 6 v(B)

v(∀pA(p))= inf{v(A(p)) : p ∈ P}
v(∃pA(p))= sup{v(A(p)) : p ∈ P}
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Properties

V↓ V↑ V∞
Decidability s1s s1s qe
Axiomatisation hs+◦ hs+◦ hs, gs
QE with ◦ with ◦ yes

(Baaz, Veith, Zach, P. 2000–)

I uncountably many different quantified propositional logics (coding
the topological structure)

I Gqp↑ =
⋂
n∈N Gqpn

I
⋂
V⊆[0,1] GqpV is not a quantified propositional Gödel logic (in

contrast to propositional and first-order Gödel logics)
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First Order Logics



First Order Gödel Logics

Fix a truth value set {0, 1} ⊆ V ⊆ [0, 1], V closed

Interpretation v consists of

I a nonempty set U, the universe of v

I for each k-ary predicate symbol P a function Pv : Uk → V

I for each k-ary function symbol f, a function fv : Uk → U

I for each variable x an object xv ∈ U



Semantic cont.

Extend the valuation to all formulas

v(A∧ B) = min{v(A), v(B)}

v(A∨ B) = max{v(A), v(B)}

v(A ⊃ B) =

v(B) if v(A) > v(B)

1 if v(A) 6 v(B)

v(∀xA(x)) = inf{v(A(u)) : u ∈ U}

v(∃xA(x)) = sup{v(A(u)) : u ∈ U}



Horn-Takeuti-Titani-Takano – axiomatizability

Axiomatizability of G[0,1]:

LIN: A ⊃ B∨ B ⊃ A
QS: ∀x(A(x)∨ B) ⊃ (∀xA(x)∨ B)

GL: IL + LIN + QS

I Horn (1969)
logic with truth values in a linearly ordered Heyting algebra

I Takeuti-Titani (1984), Takano (1987)
intuitionistic fuzzy logic
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Takano’s proof

I set of formulas F, equivalence relation ≡ by provable equivalence

I show that F/≡ is a (linear) Gödel algebra

I embed F/≡ into [0, 1]

I show that embedding preserves infima and suprema (order-theoretic
infima versus topological infima)



Connections

Gödel Logics and . . .

I topology

I order theory

I computation



Gödel Logics and Topology



Possible truth value sets

Perfect set

A set P ⊆ R is perfect if it is closed and all its points are limit points in P.

Cantor-Bendixon

Any closed V ⊆ R can be uniquely written as V = P ∪ C, with P a perfect
subset of V and C countable and open.

Examples for perfect sets
I [0, 1], any closed interval, any finite union of closed intervals

I Cantor Middle Third set C: all numbers of [0, 1] that do not have a 1
in the triadic notation (cut out all open middle intervals recursively)
(perfect but nowhere dense)
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The4 operator

4(x) =

{
1 if x = 1

0 otherwise

I introduced and axiomatised by Takeuti and Titani in their discussion
of intuitionistic fuzzy logic

I Baaz introduced and axiomatised in the context of Gödel logics

I parallels the ‘recognizability’ of 0, i.e., makes 1 recognizable.

I axiomatization of Gödel logics with4 using Hilbert style calculus



Axiomatisation of4

Baaz gave the following Hilbert style axiomatisation of the4 operator:

41 4A∨ ¬4A
42 4 (A∨ B) ⊃ (4A∨4B)
43 4A ⊃ A
44 4A ⊃ 44A
45 4 (A ⊃ B) ⊃ (4A ⊃ 4B)
4R A ` 4A

Extension of the interpretation:

v(4A) =

{
1 if v(A) = 1

0 if v(A) < 1



Full characterization of4-Axiomatizability

Recursively axiomatizable

I finitely valued
I V contains a perfect subset P and for both 0 and 1 it holds that they

are either in the perfect kernel or isolated (4 cases)

Not recursively enumerable

I countably infinite truth value set
I either 0 or 1 is not isolated but not in the perfect kernel
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Axiomatizability

VAL4V (1-SAT4V )
c (0∗-SAT4V )

c

uncountable countable inf finite
with4 1 ∈ V∞ 1 isolated otherwise

0 ∈ V∞ re re not re / /
0 isolated re re not re not re re
otherwise not re not re not re not re /

VALV (1-SATV)c = (0∗-SATV )c

without4 uncountable countable inf finite

0 ∈ V∞ re / /
0 isolated re only (1-SATV )c, (0∗-SATV )c re re
otherwise not re not re /

(Baaz, P., Zach 2007; Baaz, P. 2016)



Gödel Logics and Order Theory



Dummett – number of different logics

Dummett (1959)

All propositional (Gödel) logics based on infinite truth value sets coincide.
Thus, in total there are ℵ0 different propositional logics.

Quantified propositional

ℵ1 by coding empty and non-empty intervals

First order?

Lower bounds: always ℵ0 (finitely valued, quantifier alterations,
Cantor-Bendixon rank)
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Counting first order logics

Comparing logic

If there is an injective, continuous and order preserving embedding from
V1 into V2 that preserves 0 and 1, then GV1 ⊇ GV2 .

Fraïssé Conjecture (1948), Laver (1971)

A (Q,6) with reflexive and transitive 6 is a quasi-ordering.

The set of scattered linear orderings ordered by embeddability is a
well-quasi-ordering (does not contain infinite anti-chains nor infinitely
descending chains)



Counting first order logics

Comparing logic

If there is an injective, continuous and order preserving embedding from
V1 into V2 that preserves 0 and 1, then GV1 ⊇ GV2 .

Fraïssé Conjecture (1948), Laver (1971)

A (Q,6) with reflexive and transitive 6 is a quasi-ordering.

The set of scattered linear orderings ordered by embeddability is a
well-quasi-ordering (does not contain infinite anti-chains nor infinitely
descending chains)



Examples for quasi-orderings

Example

The collection of all linear orderings together with embeddability form a
quasi-ordering, but not a partial ordering.

η and η + 1 are different order types, but each embeddable into the other.

Example

The collection of all linear orderings contain infinite descending chains,
e.g. the order types of dense suborderings of R.
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Transfer to Gödel logics

Generalized Fraïssé Conjecture

The class of countable closed subsets of the reals with respect to injective
and continuous embeddability is a well-quasi-ordering.

GFC for Gödel logics

The class of countable Gödel logics, ordered by ⊇, is a wqo.

Final result

The number of first order Gödel logics is ℵ0.

(Beckmann, Goldstern, P. 2008)
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Gödel Logics and Computation



Motivation

I Arnon Avron: Hypersequents, Logical Consequence and
Intermediate Logics for Concurrency Ann.Math.Art.Int. 4 (1991)
225-248

I The second, deeper objective of this paper is to contribute towards a
better understanding of the notion of logical consequence in general,
and especially its possible relations with parallel computations

I We believe that these logics [...] could serve as bases for parallel
λ-calculi.

I The name “communication rule” hints, of course, at a certain intuitive
interpretation that we have of it as corresponding to the idea of
exchanging information between two multiprocesses: [...]
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Setting the stage

IL λND⇔LJ⇔ ⇐⇒
Curry Howard

Every proof system hides a model of computation.

GL HLK⇔ ?⇐⇒?HND⇔

General aim: provide Curry-Howard style
correspondences for parallel computation,

starting from logical systems with good intuitive
algebraic / relational semantics.
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Wishlist

Properties we want to have:

(semi) local

I construction of deductions:
apply ND inspired rules to extend a HND deductions

I modularity of deductions:
reorder/restructure deductions

I analyticity (sub-formula property, . . . )

normalisation

I procedural normalisation via conversion steps
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I additional rules
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Other topics



Gödel Logics and Kripke Frames

Gödel logic to Kripke frame

For each Gödel logic there is a countable linear Kripke frame such that the
respective logics coincide.

Kripke frames to Gödel logic

For each countable linear Kripke frame there is a Gödel truth value set
such that the respective logics coincide.

(Beckmann, P. 2007)



Going beyond R

Takano (1987)

Axiomatization of the logic of linear Kripke frames based on Q (which is
that of G[0,1]).

Axiomatization of the logic of linear Kripke frames based on R needs an
additional axiom.



Monadic Fragment



Decidability of validity and satisfiability

validity satisfiability

finite V full monadic Yes Yes

infinite V full monadic No No
with witnessed No No
4 quantifer prefix ∀∗∃∗ (open!) ∃∗∀∗

full monadic No 0 isolated: Yes
0 not isolated: No

infinite V prenex No Yes
without ∃, ¬-free No Yes
4 ∃ No Yes

¬-free No Yes
witnessed No Yes

(Baaz, Ciabattoni, P. 2011; Baaz, P. 2016)



Expressivity of Monadic logics

Take standard first order language.

Question: What can we express over complete linear orders?

Same question with one (1) monadic predicate symbol?
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The results

Theorem

If 0 ≺ α ≺ β ≺ ωω with β � ω, then Aα,β ∈ L(α), but Aα,β 6∈ L(β).

Theorem

If 0 ≺ α ≺ β ≺ ωω, then A∗α ∈ L(α∗), but A∗α /∈ L(β∗).
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Proof theory

Hypersequent

Γ , Π finite multisets of formulas

Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn

Rules

internal structural and logical (like LK)

external weakening and contraction
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Calculus HG

Sound and completeness

HG is sound and complete for Gödel logics (propositional and first order)

(Avron 1992, Baaz, Zach 2000)
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since 90ies

Viennese group
proof theory, #, Kripke, qp, fragments, . . .



Open problems

I intensional versus extensional definition

I Herbrand disjunctions

I Calculi for other than the standard logic

I equivalent of L(R), the logic of the Kripke frame of R within an
extended ‘real’ setting

I equivalence of ‘one logic per truth-value set’ for Gödel algebras

I quantified propositional logics – largely untapped

I computational model



Recapitulation

Standard meta-theory
I soundness, completeness
I axiomatizability
I decidability of satisfiability an validity
I sub-classes, monadic and other fragments
I proof theory
I representation theorems

Relation to different areas
I order theory, topology, polish spaces
I Kripke frames
I (Heyting) algebras
I computation
I . . .
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Conclusion

Although not traditional logic, it provides a rich meta-theory and there
are still many unexplored topics.

Application-wise of relevance due to ease of modelling and well-behaved
logic even on first-order level. (medical expert system, database
modelling, . . . )
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