Gödel Logics – A short survey

Norbert Preining¹

Colloquium Logicum 2016 September 2016, Hamburg

¹norbert@preining.info

Today's program

- Development of many-valued logics t-norm based logics
- Gödel logics (propositional quantified propositional, first order)
- ▶ Gödel logics and ...
 - Topology
 - Order Theory
 - Computability
- Other topics
 - Kripke frames and beyond the reals
 - Monadic fragment
 - Proof theory
- History
- Conclusion

The most important stops

 PLATON, ARISTOTELES (De Interpretatione IX), OCKHAM: *future possibilities*, problem of determination vs. fatalism.

- PLATON, ARISTOTELES (De Interpretatione IX), Оскнам: *future possibilities*, problem of determination vs. fatalism.
- ► ŁUKASIEWICZ 1920: 3-valued logic of *non-determinism*

- PLATON, ARISTOTELES (De Interpretatione IX), ОСКНАМ: *future possibilities*, problem of determination vs. fatalism.
- ► ŁUKASIEWICZ 1920: 3-valued logic of *non-determinism*
- ▶ Post 1920: Many-valued logic dealing with functional completion

- PLATON, ARISTOTELES (De Interpretatione IX), ОСКНАМ: *future possibilities*, problem of determination vs. fatalism.
- ► ŁUKASIEWICZ 1920: 3-valued logic of *non-determinism*
- POST 1920: Many-valued logic dealing with functional completion
- GÖDEL 1932: Finite valued logics for approximation of intuitionistic logic

- PLATON, ARISTOTELES (De Interpretatione IX), Оскнам: *future possibilities*, problem of determination vs. fatalism.
- ► ŁUKASIEWICZ 1920: 3-valued logic of *non-determinism*
- ▶ Post 1920: Many-valued logic dealing with functional completion
- GÖDEL 1932: Finite valued logics for approximation of intuitionistic logic
- Bočvar 1938: Logic of Paradoxa
- ▶ KLEENE 1952: Logic of the *unknown*
- ► ZADEH 1965: Fuzzy sets and fuzzy logics

How do we continue?

Arbitrary finite-valued logics

For all finite-valued logics with truth-value functions there is an automatic algorithm for generating a sequent calculus, proving completeness etc (MultLog, MultSeq: Baaz, Fermüller, Salzer, Zach et al. 1996ff).

How do we continue?

Arbitrary finite-valued logics

For all finite-valued logics with truth-value functions there is an automatic algorithm for generating a sequent calculus, proving completeness etc (MultLog, MultSeq: Baaz, Fermüller, Salzer, Zach et al. 1996ff).

Infinite valued logics

Does it make sense to take truth values from arbitrary partial orderings?

How do we continue?

Arbitrary finite-valued logics

For all finite-valued logics with truth-value functions there is an automatic algorithm for generating a sequent calculus, proving completeness etc (MultLog, MultSeq: Baaz, Fermüller, Salzer, Zach et al. 1996ff).

Infinite valued logics

Does it make sense to take truth values from arbitrary partial orderings?

 \Rightarrow No, because every logics with substitution property would be a many-valued logic!

Take all sentences as truth values, and all sentences of the logic as designated truth values.

Design decisions

Basic requirements

- Extension of classical logic
- ▶ [0, 1] as super-set of the truth value set
- functional relation between the truth value of a formula and the one of its sub-formulas.

Design decisions

Basic requirements

- Extension of classical logic
- ▶ [0, 1] as super-set of the truth value set
- functional relation between the truth value of a formula and the one of its sub-formulas.

Additional 'natural' properties of the conjunction

- associative $((A \land B) \land C \Leftrightarrow A \land (B \land C))$
- commutative $(A \land B \Leftrightarrow B \land A)$
- order preserving If A is less true than b, then $A \wedge C$ is less (or equal) true than $B \wedge C$.
- continuous

Definition of (continuous) t-norms

Definition

A t-norm is an associative, commutative, and monotone mapping from $[0,1]^2 \rightarrow [0,1]$ with 1 as neutral element.

$$(x \star y) \star z = x \star (y \star z)$$

- $x \star y = y \star x$
- $\blacktriangleright \ x \leqslant y \supset x \star z \leqslant y \star z$
- $\blacktriangleright 1 \star x = x$
- * is continuous

Definition of (continuous) t-norms

Definition

A t-norm is an associative, commutative, and monotone mapping from $[0,1]^2 \rightarrow [0,1]$ with 1 as neutral element.

$$(x \star y) \star z = x \star (y \star z)$$

- $x \star y = y \star x$
- $\blacktriangleright \ x \leqslant y \supset x \star z \leqslant y \star z$
- $\blacktriangleright 1 \star x = x$
- * is continuous

Algebraic view

 $\langle [0,1],\star,1,\leqslant\rangle$ is a commutative and ordered monoid.

From t-norm to the logic

From t-norm to the logic

The residuum of a t-norm

Every t-norm has a residuum

$$\begin{array}{rcl} x \star z \leqslant y & \Leftrightarrow & z \leqslant (x \Rightarrow y) \\ x \Rightarrow y & \coloneqq & \max\{z : x \star z \leqslant y\} \end{array}$$

From t-norm to the logic

The residuum of a t-norm

Every t-norm has a residuum

$$\begin{array}{rcl} \mathbf{x} \star z \leqslant \mathbf{y} & \Leftrightarrow & z \leqslant (\mathbf{x} \Rightarrow \mathbf{y}) \\ \mathbf{x} \Rightarrow \mathbf{y} & \coloneqq & \max\{z : \mathbf{x} \star z \leqslant \mathbf{y}\} \end{array}$$

Truth functions for operators

- strong conjunction &: defined via the t-norm
- ▶ implication ⊃: defined via the residuum
- Negation: $\neg A := A \supset \bot$
- (weak) disjunction: $A \lor B := (A \supset B) \supset B$
- (weak) conjunction: $A \land B := \neg(\neg A \lor \neg B)$

• strong disjunction:
$$A \bigvee B := \neg(A \supset \neg B)$$

Basic t-norms

Gödel

non-trivial idempotent elements

Basic t-norms

Gödel

Łukasiewicz

non-trivial idempotent elements

no non-trivial idempotent elements, but zero divisors

BASIC t-NORMS

Gödel

non-trivial idempotent elements

Łukasiewicz

no non-trivial idempotent elements, but zero divisors Product

no non-trivial idempotent elements, no zero divisors **Representation of t-norm**

Theorem (Mostert and Shields, 1957)

Every t-norm is the ordinal sum of Łukasiewicz t-norm and Product t-norm.

QUESTIONS AND RESULTS

- Basic logic: the logic of all t-norms (Hajek 1998)
- Axiomatizability: propositional logic: easy, first-order: only Gödel logics are axiomatizable (Scarpellini 1962, Horn 1969, Takeuti, Titani 1984, Takano 1987)
- calculi for propositional logic: sequent calculus for Gödel logic (Avron 1991, hyper sequent calculus), Π- und Ł-Logik (Gabbay, Metcalfe, Olivetti 2003).
- ▶ calculi for first order logic: only for Gödel logic (Baaz, Zach 2000)
- Game interpretation: Łukasiewicz Logic: interpretation via Ulam's games (Mundici, 1991-93), Gödel, Product, Łukasiewicz: interpretation via Lorenzen style games (Giles 1970; Fermüller, Metcalfe, Ciabattoni 2003-04)
- ▶ other questions: automatic theorem proving, size of families, ...

Gödel Logics

Propositional Logics

PROPOSITIONAL LOGIC

Usual propositional language, $\neg A$ is defined as $A \supset \bot$.

Evaluations

Fix a truth value set $\{0, 1\} \subseteq V \subseteq [0, 1]$ v maps propositional variables to elements of V

$$\nu(A \land B) = \min\{\nu(A), \nu(B)\}$$
$$\nu(A \lor B) = \max\{\nu(A), \nu(B)\}$$
$$\nu(A \supset B) = \begin{cases} \nu(B) & \text{if } \nu(A) > \nu(B) \\ 1 & \text{if } \nu(A) \leqslant \nu(B). \end{cases}$$

NEGATION

This yields the following definition of the semantics of \neg :

$$v(\neg A) = \begin{cases} 0 & \text{if } v(A) > 0\\ 1 & \text{otherwise} \end{cases}$$

TAKEUTI'S OBSERVATION

Gödel implication

$$\nu(A \supset B) = \begin{cases} \nu(B) & \text{if } \nu(A) > \nu(B) \\ 1 & \text{if } \nu(A) \leqslant \nu(B). \end{cases}$$

is the only one satisfying:

- $\blacktriangleright \ \nu(A) \leqslant \nu(B) \Leftrightarrow \nu(A \supset B) = 1$
- $\blacktriangleright \ \Pi \cup \{A\} \Vdash B \Leftrightarrow \Pi \Vdash A \supset B$
- $\Pi \Vdash B \Rightarrow \min\{\nu(A) : A \in \Pi\} \leq \nu(B)$ (and if $\Pi = \emptyset \Rightarrow 1 \leq \nu(B)$)

DEFINITION OF THE LOGIC

$$G_V = \{A : \forall v \text{ into } V : v(A) = 1\}$$

DEFINITION OF THE LOGIC

$$G_{\mathbf{V}} = \{ \mathbf{A} : \forall \mathbf{v} \text{ into } \mathbf{V} : \mathbf{v}(\mathbf{A}) = 1 \}$$

Examples

$$\begin{split} V &= \{0,1\} & \to G_V = CPL \\ V_1 &= \{0,1/2,1\}, V_2 = \{0,1/3,1\} & \to G_{V_1} = G_{V_2} \\ V_{\uparrow} &= \{1-1/n:n \geqslant 1\} \cup \{1\} & \to G_{V_{\uparrow}} = G_{\uparrow} \\ V_{\downarrow} &= \{1/n:n \geqslant 1\} \cup \{0\} & \to G_{V_{\downarrow}} = G_{\downarrow} \end{split}$$

PROPOSITIONAL COMPLETENESS

- Lindenbaum algebra of the formulas
- show that the algebra $\mathcal{F} \equiv$ is a subalgebra of

$$X = \prod_{i=1}^{n!} \mathcal{C}(\bot, \pi_i(p_1, \ldots, p_n), \top)$$

 $(\mathbb{C}(\ldots)$ being the chain consisting of the listed elements, and the π_i all the permutations) by defining

$$\varphi(|\alpha|) = (|\alpha|_{\mathcal{C}_1}, \dots, |\alpha|_{\mathcal{C}_{n!}})$$

Consequences

countably many propositional Gödel logics

$$G_2 \supset G_3 \supset \ldots \supset G_n \supset \ldots \supset G_{\uparrow} = G_{\downarrow} = G_V = G_{\infty} = \bigcap_{n \geqslant 2} G_n$$

(where V is any infinite truth value set)

▶ if $f: V_1 \mapsto V_2$ with f(0) = 0 and f(1) = 1, order-preserving $(x < y \Rightarrow f(x) < f(y))$, then

$$G_{V_1} \supseteq G_{V_2}$$

check on satisfiability and validity

Quantified Propositional Logics

PROPOSITIONAL LOGIC

Fix a truth value set $\{0, 1\} \subseteq V \subseteq [0, 1]$ v maps propositional variables to elements of V

$$\nu(A \land B) = \min\{\nu(A), \nu(B)\}$$
$$\nu(A \lor B) = \max\{\nu(A), \nu(B)\}$$
$$\nu(A \supset B) = \begin{cases} \nu(B) & \text{if } \nu(A) > \nu(B) \\ 1 & \text{if } \nu(A) \leqslant \nu(B) \end{cases}$$

QUANTIFIED PROPOSITIONAL LOGIC

Fix a truth value set $\{0, 1\} \subseteq V \subseteq [0, 1]$, V closed v maps propositional variables to elements of V

$$\nu(A \land B) = \min\{\nu(A), \nu(B)\}$$

$$\nu(A \lor B) = \max\{\nu(A), \nu(B)\}$$

$$\nu(A \supset B) = \begin{cases} \nu(B) & \text{if } \nu(A) > \nu(B) \\ 1 & \text{if } \nu(A) \leqslant \nu(B) \end{cases}$$

$$\nu(\forall pA(p)) = \inf\{\nu(A(p)) : p \in P\}$$

$$\nu(\exists pA(p)) = \sup\{\nu(A(p)) : p \in P\}$$

Properties

	V_{\downarrow}	V_{\uparrow}	V_∞
Decidability	S1S	S1S	QE
Axiomatisation	$_{\rm HS+\circ}$	$_{\rm HS+\circ}$	HS, GS
QE	with \circ	with \circ	yes

(Baaz, Veith, Zach, P. 2000–)

Properties

	V_{\downarrow}	V_{\uparrow}	V_∞
Decidability	S1S	S1S	QE
Axiomatisation	HS+0	$_{\rm HS+\circ}$	HS, GS
QE	with \circ	with \circ	yes

(Baaz, Veith, Zach, P. 2000-)

 uncountably many different quantified propositional logics (coding the topological structure)
PROPERTIES

	V_{\downarrow}	V_{\uparrow}	V_∞
Decidability	S1S	S1S	QE
Axiomatisation	HS+0	$_{\rm HS+\circ}$	HS, GS
QE	with \circ	with \circ	yes

(Baaz, Veith, Zach, P. 2000-)

- uncountably many different quantified propositional logics (coding the topological structure)
- ► $G^{qp}_{\uparrow} = \bigcap_{n \in \mathbb{N}} G^{qp}_n$
- ∩_{V⊆[0,1]} G_V^{qp} is not a quantified propositional Gödel logic (in contrast to propositional and first-order Gödel logics)

First Order Logics

First Order Gödel Logics

Fix a truth value set $\{0,1\}\subseteq V\subseteq [0,1],$ V closed

Interpretation v consists of

- a nonempty set U, the universe of v
- \blacktriangleright for each k-ary predicate symbol P a function $\mathsf{P}^\nu:\mathsf{U}^k\to\mathsf{V}$
- \blacktriangleright for each k-ary function symbol f, a function $f^{\nu}: U^k \rightarrow U$
- for each variable x an object $x^{\nu} \in U$

Semantic cont.

Extend the valuation to all formulas

$$\nu(A \land B) = \min\{\nu(A), \nu(B)\}$$
$$\nu(A \lor B) = \max\{\nu(A), \nu(B)\}$$
$$\nu(A \supset B) = \begin{cases} \nu(B) & \text{if } \nu(A) > \nu(B) \\ 1 & \text{if } \nu(A) \leqslant \nu(B) \end{cases}$$
$$\nu(\forall xA(x)) = \inf\{\nu(A(u)) : u \in U\}$$
$$\nu(\exists xA(x)) = \sup\{\nu(A(u)) : u \in U\}$$

Horn-Takeuti-Titani-Takano – axiomatizability

Axiomatizability of $G_{[0,1]}$:

 Horn-Takeuti-Titani-Takano – axiomatizability

Axiomatizability of $G_{[0,1]}$:

Horn-Takeuti-Titani-Takano – axiomatizability

Axiomatizability of $G_{[0,1]}$:

LIN: $A \supset B \lor B \supset A$ QS: $\forall x(A(x) \lor B) \supset (\forall xA(x) \lor B)$ GL: IL + LIN + OS

- Horn (1969) logic with truth values in a linearly ordered Heyting algebra
- Takeuti-Titani (1984), Takano (1987) intuitionistic fuzzy logic

- ▶ set of formulas \mathcal{F} , equivalence relation \equiv by provable equivalence
- ▶ show that \mathcal{F}/\equiv is a (linear) Gödel algebra
- embed \mathcal{F}/\equiv into [0, 1]
- show that embedding preserves infima and suprema (order-theoretic infima versus topological infima)

Gödel Logics and ...

- ► topology
- order theory
- computation

Gödel Logics and Topology

Possible truth value sets

Perfect set

A set $P \subseteq \mathbb{R}$ is perfect if it is closed and all its points are limit points in P.

Cantor-Bendixon

Any closed $V \subseteq \mathbb{R}$ can be uniquely written as $V = P \cup C$, with P a perfect subset of V and C countable and open.

Possible truth value sets

Perfect set

A set $P \subseteq \mathbb{R}$ is perfect if it is closed and all its points are limit points in P.

Cantor-Bendixon

Any closed $V \subseteq \mathbb{R}$ can be uniquely written as $V = P \cup C$, with P a perfect subset of V and C countable and open.

Examples for perfect sets

- ▶ [0, 1], any closed interval, any finite union of closed intervals
- Cantor Middle Third set C: all numbers of [0, 1] that do not have a 1 in the triadic notation (cut out all open middle intervals recursively) (perfect but nowhere dense)

The \triangle operator

$$\triangle(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} = 1 \\ 0 & \text{otherwise} \end{cases}$$

- introduced and axiomatised by Takeuti and Titani in their discussion of intuitionistic fuzzy logic
- Baaz introduced and axiomatised in the context of Gödel logics
- ▶ parallels the 'recognizability' of 0, i.e., makes 1 recognizable.
- axiomatization of Gödel logics with \triangle using Hilbert style calculus

Axiomatisation of \triangle

Baaz gave the following Hilbert style axiomatisation of the \triangle operator:

Extension of the interpretation:

$$\nu(\triangle A) = \begin{cases} 1 & \text{if } \nu(A) = 1 \\ 0 & \text{if } \nu(A) < 1 \end{cases}$$

Full characterization of \triangle -Axiomatizability

Recursively axiomatizable

- finitely valued
- V contains a perfect subset P and for both 0 and 1 it holds that they are either in the perfect kernel or isolated (4 cases)

Full characterization of \triangle -Axiomatizability

Recursively axiomatizable

- finitely valued
- V contains a perfect subset P and for both 0 and 1 it holds that they are either in the perfect kernel or isolated (4 cases)

Not recursively enumerable

- countably infinite truth value set
- either 0 or 1 is not isolated but not in the perfect kernel

AXIOMATIZABILITY

	$\operatorname{VAL}_V^{\bigtriangleup}$	(1-SAT	${\overset{\bigtriangleup}{_V}})^{\mathrm{c}}$ (0*	$-SAT_V^{\triangle})^c$	
		uncountab	le	countable inf	finite
with $ riangle$	$1\in V^\infty$	1 isolated	otherwise		
$\emptyset\in V^\infty$	re	re	not re	/	/
0 isolated	re	re	not re	not re	re
otherwise	not re	not re	not re	not re	/

	VAL _V	$(1-SAT_V)^c = (0^*-SAT_V)^c$	
without $ riangle$	uncountable	countable inf	finite
$\mathfrak{0}\in V^\infty$	re	/	/
0 isolated	re	only $(1-SAT_V)^c$, $(0^*-SAT_V)^c$ re	re
otherwise	not re	not re	/

(Baaz, P., Zach 2007; Baaz, P. 2016)

Gödel Logics and Order Theory

DUMMETT – NUMBER OF DIFFERENT LOGICS

Dummett (1959)

All propositional (Gödel) logics based on infinite truth value sets coincide. Thus, in total there are \aleph_0 different propositional logics.

Dummett (1959)

All propositional (Gödel) logics based on infinite truth value sets coincide. Thus, in total there are \aleph_0 different propositional logics.

Quantified propositional

 \aleph_1 by coding empty and non-empty intervals

Dummett (1959)

All propositional (Gödel) logics based on infinite truth value sets coincide. Thus, in total there are \aleph_0 different propositional logics.

Quantified propositional

 \aleph_1 by coding empty and non-empty intervals

First order?

Lower bounds: always \aleph_0 (finitely valued, quantifier alterations, Cantor-Bendixon rank)

Counting first order logics

Comparing logic

If there is an injective, continuous and order preserving embedding from V_1 into V_2 that preserves 0 and 1, then $G_{V_1} \supseteq G_{V_2}$.

Counting first order logics

Comparing logic

If there is an injective, continuous and order preserving embedding from V_1 into V_2 that preserves 0 and 1, then $G_{V_1} \supseteq G_{V_2}$.

Fraïssé Conjecture (1948), Laver (1971)

A (Q, \leq) with reflexive and transitive \leq is a *quasi-ordering*.

The set of scattered linear orderings ordered by embeddability is a *well-quasi-ordering* (does not contain infinite anti-chains nor infinitely descending chains)

Example

The collection of all linear orderings together with embeddability form a quasi-ordering, but not a partial ordering.

 η and η + 1 are different order types, but each embeddable into the other.

Example

The collection of all linear orderings together with embeddability form a quasi-ordering, but not a partial ordering.

 η and η + 1 are different order types, but each embeddable into the other.

Example

The collection of all linear orderings contain infinite descending chains, e.g. the order types of dense suborderings of \mathbb{R} .

Transfer to Gödel logics

Generalized Fraïssé Conjecture

The class of countable closed subsets of the reals with respect to injective and continuous embeddability is a well-quasi-ordering.

Transfer to Gödel logics

Generalized Fraïssé Conjecture

The class of countable closed subsets of the reals with respect to injective and continuous embeddability is a well-quasi-ordering.

GFC for Gödel logics

The class of countable Gödel logics, ordered by \supseteq , is a wqo.

Transfer to Gödel logics

Generalized Fraïssé Conjecture

The class of countable closed subsets of the reals with respect to injective and continuous embeddability is a well-quasi-ordering.

GFC for Gödel logics

The class of countable Gödel logics, ordered by \supseteq , is a wqo.

Final result

The number of first order Gödel logics is \aleph_0 .

(Beckmann, Goldstern, P. 2008)

Gödel Logics and Computation

MOTIVATION

 Arnon Avron: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency Ann.Math.Art.Int. 4 (1991) 225-248

MOTIVATION

- Arnon Avron: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency Ann.Math.Art.Int. 4 (1991) 225-248
 - The second, deeper objective of this paper is to contribute towards a better understanding of the notion of logical consequence in general, and especially its possible relations with parallel computations
 - We believe that these logics [...] could serve as bases for parallel λ-calculi.
 - ► The name "communication rule" hints, of course, at a certain intuitive interpretation that we have of it as corresponding to the idea of exchanging information between two multiprocesses: [...]

$$(IL) \Leftrightarrow (LJ) \Leftrightarrow (ND) \overset{Curry \, Howard}{\iff} (\lambda)$$

$$(IL) \Leftrightarrow (LJ) \Leftrightarrow (ND) \overset{Curry\,Howard}{\Longleftrightarrow} (\lambda)$$

Every proof system hides a model of computation.

$$(IL) \Leftrightarrow (LJ) \Leftrightarrow (ND) \stackrel{Curry Howard}{\iff} (\lambda)$$

$$(IL) \Leftrightarrow (LJ) \Leftrightarrow (ND) \stackrel{Curry Howard}{\iff} (\lambda)$$

$$(GL) \Leftrightarrow (HLK) \Leftrightarrow (HND) \iff ? (?)$$

General aim: provide Curry-Howard style correspondences for parallel computation, starting from logical systems with good intuitive algebraic / relational semantics.

WISHLIST

Properties we want to have:

(semi) local

- construction of deductions: apply ND inspired rules to extend a HND deductions
- modularity of deductions: reorder/restructure deductions
- analyticity (sub-formula property, ...)
WISHLIST

Properties we want to have:

(semi) local

- construction of deductions: apply ND inspired rules to extend a HND deductions
- modularity of deductions: reorder/restructure deductions
- ► analyticity (sub-formula property, ...)

normalisation

procedural normalisation via conversion steps

$$(\operatorname{com}) \xrightarrow{\Gamma \Rightarrow A} \xrightarrow{\Delta \Rightarrow B} \xrightarrow{\Gamma} \xrightarrow{A} A$$

$$(\operatorname{com}) \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A} \qquad \begin{array}{c} \Gamma \qquad \Delta \\ \vdots \\ A \qquad B \end{array}$$

$$(\operatorname{com}) \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A} \qquad \begin{array}{c} \Gamma & \Delta \\ \vdots \\ com \frac{A}{B} \end{array} \qquad B$$

$$(\operatorname{com}) \xrightarrow{\Gamma \Rightarrow A} \xrightarrow{\Delta \Rightarrow B} \qquad \qquad \begin{array}{c} \Gamma & \Delta \\ \vdots & \vdots \\ \Gamma \Rightarrow B \mid \Delta \Rightarrow A \end{array} \qquad \qquad \begin{array}{c} com \xrightarrow{A} \\ com \xrightarrow{B} \\ A \end{array}$$

$$(\operatorname{com}) \frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma \Rightarrow B \mid \Delta \Rightarrow A} \qquad \qquad \begin{array}{c} \Gamma \qquad \Delta \\ \vdots \\ com \frac{A}{B} \quad \overline{com} \frac{B}{A} \end{array}$$

$$(\operatorname{com}) \xrightarrow{\Gamma \Rightarrow A} \xrightarrow{\Delta \Rightarrow B} \qquad \qquad \begin{array}{c} \Gamma & \Delta \\ \vdots & \vdots \\ \Gamma \Rightarrow B \mid \Delta \Rightarrow A \end{array} \qquad \qquad \begin{array}{c} com \xrightarrow{A} & \sigma \\ com \xrightarrow{A} & \overline{com} \xrightarrow{B} \end{array}$$

- consider sets of derivation trees
- divide communication (and split) into two dual parts
- search for minimal set of conditions that provides sound and complete deduction system

Reasoning in Hyper Natural Deduction

Double extension in *the spirit* of ND:

- from one tree to set of trees
- additional rules

Reasoning in Hyper Natural Deduction

Double extension in *the spirit* of ND:

- from one tree to set of trees
- additional rules

Reasoning in Hyper Natural Deduction

Double extension in *the spirit* of ND:

- from one tree to set of trees
- additional rules

Results for Hyper Natural Deduction

- sound and complete for standard first order Gödel logic
- procedural normalization
- sub-formula property

(Beckmann, P. 2016)

Results for Hyper Natural Deduction

- sound and complete for standard first order Gödel logic
- procedural normalization
- sub-formula property

(Beckmann, P. 2016)

Beauty of this system

- Hyper rules derivations are completely in ND style
- Hyper rules mimic HLK/BCF system
- natural style of deduction

Other topics

Gödel Logics and Kripke Frames

Gödel logic to Kripke frame

For each Gödel logic there is a countable linear Kripke frame such that the respective logics coincide.

Kripke frames to Gödel logic

For each countable linear Kripke frame there is a Gödel truth value set such that the respective logics coincide.

(Beckmann, P. 2007)

Takano (1987)

Axiomatization of the logic of linear Kripke frames based on $\mathbb Q$ (which is that of $G_{[0,1]}).$

Axiomatization of the logic of linear Kripke frames based on $\mathbb R$ needs an additional axiom.

Monadic Fragment

Decidability of validity and satisfiability

		validity	satisfiability
finite V	full monadic	Yes	Yes
infinite V	full monadic	No	No
with	witnessed	No	No
\bigtriangleup	quantifer prefix	$\forall^*\exists^*$	(open!) $\exists^* \forall^*$
	full monadic	No	0 isolated: Yes
			0 not isolated: No
infinite V	prenex	No	Yes
without	∃, ¬-free	No	Yes
\bigtriangleup	Э	No	Yes
	¬-free	No	Yes
	witnessed	No	Yes

(Baaz, Ciabattoni, P. 2011; Baaz, P. 2016)

Expressivity of Monadic logics

Take standard first order language.

Question: What can we express over complete linear orders?

Expressivity of Monadic logics

Take standard first order language.

Question: What can we express over complete linear orders?

Same question with one (1) monadic predicate symbol?

Theorem

If $0 \prec \alpha \prec \beta \prec \omega^{\omega}$ with $\beta \succeq \omega$, then $A_{\alpha,\beta} \in L(\alpha)$, but $A_{\alpha,\beta} \notin L(\beta)$.

Theorem

If $0 \prec \alpha \prec \beta \prec \omega^{\omega}$ with $\beta \succeq \omega$, then $A_{\alpha,\beta} \in L(\alpha)$, but $A_{\alpha,\beta} \notin L(\beta)$.

Theorem

If $0 \prec \alpha \prec \beta \prec \omega^{\omega}$, then $A^*_{\alpha} \in L(\alpha^*)$, but $A^*_{\alpha} \notin L(\beta^*)$.

(Beckmann, P 2014)

BASIC IDEA

Separate 2 from 3-valued logic

BASIC IDEA

Separate 2 from 3-valued logic

 $(x_1 \supset x_2) \lor (x_2 \supset x_3)$

Proof theory

Hypersequent

 $\Gamma,\,\Pi$ finite multisets of formulas

 $\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n$

Proof theory

Hypersequent

Γ, Π finite multisets of formulas

$$\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n$$

Rules

internal structural and logical (like LK)

external weakening and contraction

$$\frac{G \mid \Gamma, \Delta \Rightarrow A \quad G' \mid \Gamma', \Delta' \Rightarrow A'}{G \mid G' \mid \Gamma, \Delta' \Rightarrow A \mid \Delta, \Gamma' \Rightarrow A'} (com)$$

Sound and completeness

HG is sound and complete for Gödel logics (propositional and first order) (Avron 1992, Baaz, Zach 2000)

Sound and completeness

HG is sound and complete for Gödel logics (propositional and first order) (Avron 1992, Baaz, Zach 2000)

Linearity

 $\Rightarrow (A \supset B) \lor (B \supset A)$

Sound and completeness

HG is sound and complete for Gödel logics (propositional and first order) (Avron 1992, Baaz, Zach 2000)

Linearity

 $\frac{\Rightarrow (A \supset B) \lor (B \supset A) \mid \Rightarrow (A \supset B) \lor (B \supset A)}{\Rightarrow (A \supset B) \lor (B \supset A)}$

Sound and completeness

HG is sound and complete for Gödel logics (propositional and first order) (Avron 1992, Baaz, Zach 2000)

Linearity

$$\frac{\Rightarrow A \supset B \mid \Rightarrow B \supset A}{\Rightarrow (A \supset B) \lor (B \supset A) \mid \Rightarrow (A \supset B) \lor (B \supset A)} \\ \Rightarrow (A \supset B) \lor (B \supset A) \mid \Rightarrow (A \supset B) \lor (B \supset A)}$$

Sound and completeness

HG is sound and complete for Gödel logics (propositional and first order) (Avron 1992, Baaz, Zach 2000)

Linearity

$$\frac{\overline{A \Rightarrow B \mid B \Rightarrow A}}{\Rightarrow A \supset B \mid \Rightarrow B \supset A}$$

$$\frac{\Rightarrow (A \supset B) \lor (B \supset A) \mid \Rightarrow (A \supset B) \lor (B \supset A)}{\Rightarrow (A \supset B) \lor (B \supset A)}$$

CALCULUS HG

Sound and completeness

HG is sound and complete for Gödel logics (propositional and first order) (Avron 1992, Baaz, Zach 2000)

History

Timeline

1933

Gödel

finitely valued logics

History

Timeline

infinitely valued propositional Gödel logics

History

Timeline

linearly ordered Heyting algebras

HISTORY

Timeline

intuitionistic fuzzy logic
HISTORY

Timeline 1933 1959 1969 1984 Gödel Dummett Horn Takeuti-Titani Avron

hypersequent calculus

HISTORY

Timeline

t-norm based logics

HISTORY

OPEN PROBLEMS

- intensional versus extensional definition
- Herbrand disjunctions
- Calculi for other than the standard logic
- ▶ equivalent of L(ℝ), the logic of the Kripke frame of ℝ within an extended 'real' setting
- ▶ equivalence of 'one logic per truth-value set' for Gödel algebras
- quantified propositional logics largely untapped
- computational model

RECAPITULATION

RECAPITULATION

Standard meta-theory

- soundness, completeness
- axiomatizability
- decidability of satisfiability an validity
- sub-classes, monadic and other fragments
- proof theory
- representation theorems

RECAPITULATION

Standard meta-theory

- soundness, completeness
- axiomatizability
- decidability of satisfiability an validity
- sub-classes, monadic and other fragments
- ► proof theory
- representation theorems

Relation to different areas

- order theory, topology, polish spaces
- Kripke frames
- ► (Heyting) algebras
- computation

▶ ..

Although not traditional logic, it provides a rich meta-theory and there are still many unexplored topics.

Application-wise of relevance due to ease of modelling and well-behaved logic even on first-order level. (medical expert system, database modelling, ...)

Although not traditional logic, it provides a rich meta-theory and there are still many unexplored topics.

Application-wise of relevance due to ease of modelling and well-behaved logic even on first-order level. (medical expert system, database modelling, ...)

Fun!

Although not traditional logic, it provides a rich meta-theory and there are still many unexplored topics.

Application-wise of relevance due to ease of modelling and well-behaved logic even on first-order level. (medical expert system, database modelling, ...)

Fun!

Thanks