L211 Logic and Mathematics
13. Lecture

Norbert PREINING
preining@jaist.ac.jp
http://www.preining.info/jaist/l211/2015e/

Important points

- (Non-)Euclidean geometry: hyperbolic, elliptic
- $\epsilon-\delta$ definitions
- sequence, series
- convergence, continuity
- graphs, functions, inverse functions, domain, range
- power series

Last lecture

(Non-)Euclidean geometry, functions,

 sequence, convergence, continuityWhat is a graph?
Graph $G=(V, E)$

- V : set of nodes
- $E \subseteq V \times V$: set of edges

Example:
$V=\{A, B, C, D, E\}$
$E=\{(A, A),(A, B),(A, C),(A, D),(B, E),(C, D),(C, E),(D, E)\}$

Spanning Tree

The spanning tree of a graph G $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G such that:

- $V^{\prime}=V$
- $E^{\prime} \subseteq E$
- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a tree (no closed circles)

Travelling salesman problem

Find the path with the least costs for a traveling salesman such that he visits every place (township) exactly once.

Minimal spanning tree

- Graph $G=(V, E)$
- Cost function $f: E \rightarrow \mathbb{N}$
- Requested: a spanning tree with minimal costs

Minimal costs: 38

STP Spanning Tree Protocol
bridged Ethernet LAN

Models of computations

Old ladies' houses

Four old ladies live in their respective houses in the corner of a square of 1 km side, and want to build connecting streets.
What is the shortest street that connects all four?

Length: $\mathbf{3} 15 \hbar$. . . km

Primitive recursive functions
$f: \mathbb{N}^{n} \rightarrow \mathbb{N}$

- Constant functions $0:\{ \} \rightarrow \mathbb{N}$
- Successor function: $S: \mathbb{N} \rightarrow \mathbb{N}$
- Projection functions: $P_{i}^{n}: \mathbb{N}^{n} \rightarrow \mathbb{N} \quad P_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$
- Composition: If $f(k$-ary $)$ and g_{i} (m-ary) are prf, then also $f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{m}\right)\right): \mathbb{N}^{m} \rightarrow \mathbb{N}$
- primitive recursion: if $f(k$-ary $), g(k+2$-ary $)$ are prf, then also

$$
\begin{aligned}
h\left(0, x_{1}, \ldots, x_{k}\right) & =f\left(x_{1}, \ldots, x_{k}\right) \\
h\left(S(y), x_{1}, \ldots, x_{k}\right) & =g\left(h\left(y, x_{1}, \ldots, x_{k}\right), y, x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

Examples of prf

Addition

$$
\begin{aligned}
\operatorname{add}(0, x) & =P_{1}^{1}(x) \\
\operatorname{add}(S(n), x) & =S\left(P_{1}^{3}(\operatorname{add}(n, x), n, x)\right)=S(\operatorname{add}(n, x))
\end{aligned}
$$

$$
h=\operatorname{add}, f=P_{1}^{1}, g=S \circ P_{1}^{3},
$$

Examples of prf cont.

Predecessor

$$
\begin{aligned}
\operatorname{pred}(0) & =0 \\
\operatorname{pred}(S(n)) & =P_{2}^{2}(\operatorname{pred}(n), n)=n
\end{aligned}
$$

Subtraction

$$
\begin{aligned}
\operatorname{sub}(0, x) & =P_{1}^{1}(x) \\
\operatorname{sub}(S(n), x) & =\operatorname{pred}\left(P_{1}^{3}(\operatorname{sub}(n, x), n, x)\right)
\end{aligned}
$$

Are these all the functions that are computable?
μ-recursive functions

primitive recursive functions plus

- μ operator: $f(k+1$-ary $)$

$$
\begin{gathered}
\mu(f)\left(x_{1}, \ldots, x_{k}\right)=z \\
\mathfrak{\Downarrow} \\
f\left(z, x_{1}, \ldots, x_{k}\right)=0 \quad \text { and } \\
f\left(i, x_{1}, \ldots, x_{k}\right)>0 \quad i=0, \ldots, z-1
\end{gathered}
$$

Example

$$
\begin{aligned}
f(z, x) & =\operatorname{sub}(\operatorname{add}(z, x), S(S(S(S(S(S(S(0)))))))) \\
g(x) & =\mu(f)(x) \\
g(4) & =? \quad g(8)=?
\end{aligned}
$$

Alan Turing

- 1912-1954
- English mathematician
- Cryptology
- Models of computation
- Turing machine
- 1952 imprisoned for homosexuality
- 1954 died, probably suicide

- 2013-12-24 pardoned by the Queen

Enigma

- Rotor cipher machine
- Code: NIBLFMYMLLUFWCASCSSNVHAZ
- Meaning: THEXRUSSIANSXAREXCOMINGX

Enigma

Turing machine

Parts of the machine

- infinite tape
- read-write head
- memory for internal states

Operations

- head can read/write to/from the tape at the current position
- state of the machine can be changed
- head can be moved left or right

Formalization

- Q: set of states
- Σ : input alphabet
- ৬: empty/space symbol
- Γ : tape alphabet $\Gamma \supseteq \Sigma \cup\{\sqcup\}$
- q_{0} : initial state $q_{0} \in Q$
- q_{a} : accepting state $q_{a} \in Q$
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$

Example: $Q=\left\{q_{0}, q_{a}\right\}, \Sigma=\{a\}, \Gamma=\{a, \sqcup\}$
$\delta\left(q_{0}, a\right)=\left(q_{0}, a, \mathrm{R}\right), \delta\left(q_{0}, \sqcup\right)=\left(q_{a}, \sqcup, \mathrm{R}\right)$

Computations
Program
$f\left(n_{1}, \ldots, n_{k}\right)=m$

- $\Sigma=\{1\}$
- Input: $\sqcup^{*}\left(n_{1}\right) \cup\left(n_{2}\right) \cup \ldots \sqcup\left(n_{k}\right) \sqcup^{*}$
- Output: $\sqcup^{*}(m) \sqcup^{*}$
$f(n, m)=n+m$

Input:

Output:

$$
\begin{aligned}
& \delta\left(q_{0}, 1\right)=\left(q_{0}, 1, \mathrm{R}\right) \\
& \delta\left(q_{0}, \sqcup\right)=\left(q_{1}, 1, \mathrm{R}\right) \\
& \delta\left(q_{1}, 1\right)=\left(q_{1}, 1, \mathrm{R}\right) \\
& \delta\left(q_{1}, \sqcup\right)=\left(q_{2}, \sqcup, \mathrm{~L}\right) \\
& \delta\left(q_{2}, 1\right)=\left(q_{a}, \sqcup, \mathrm{R}\right)
\end{aligned}
$$

Automaton

$\delta\left(q_{0}, 1\right)=\left(q_{0}, 1, \mathrm{R}\right) \quad \delta\left(q_{1}, 1\right)=\left(q_{1}, 1, \mathrm{R}\right) \quad \delta\left(q_{2}, 1\right)=\left(q_{a}, \sqcup, \mathrm{R}\right)$
$\delta\left(q_{0}, \sqcup\right)=\left(q_{1}, 1, \mathrm{R}\right) \quad \delta\left(q_{1}, \sqcup\right)=\left(q_{2}, \sqcup, \mathrm{~L}\right)$

Example of a program

- acceptance of words $a^{*} b a^{*}$
- Palindrom
- addition in binary

Sources

Wikimedia
Turing machine: http://morphett.info/turing/turing.html Enigma rotor, Enigma: WikiCommons, GFDL

What functions are computatble?

Church-Turing Thesis

