L211 Logic and Mathematics

12. Lecture

Norbert PREINING
preining@jaist.ac.jp
http://www.preining.info/jaist/1211/2015e/

Euclid(es) of Alexandria

- Greek mathematician
- 323-283BC
- perspective drawings, conic curves, astronomy, cartography
- Euclid's Elements

Euclid's Elements

- 13 volumes
- Content of vol. 1-4: development of geometry
- basic concept: point, line
- set of axioms, axiom system
- about 500 theorems with proofs

Parallel Postulate

That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles.

Euclid's axioms

Let the following be postulated:

- To draw a straight line from any point to any point
- To extend a finite straight line continuously in a straight line.
- To draw a circle with any center and radius.
- That all right angles are equal to each other.
- Parallel postulate

Equivalent properties

- There is at most one line that can be drawn parallel to another given one through an external point.bis
- The sum of the angles in every triangle is 180°.
- The sum of the angles is the same for every triangle.
- If three angles of a quadrilateral are right angles, then the fourth angle is also a right angle.

History of the Parallel Postulate

- a bit different axiom. . . many wrong 'proofs'
- Ptolemaios, c.90-c. 168
- Proclus Lycaeus, 412-485
- Ibn al-Haitham, 965-1040
- Omar Khayyám, 1048-1131
- Nasir al-Din al-Tusi, 1201-12
- Giordano Vitale, 1633-1711
- Johann Lambert, 1728-1777
- ...

Rejection of the Parallel Postulate

- Non-Euclidean Geometry
- Geometries were the Parallel Postulate does not hold

	Riemann	Euclid	Lobachevsky
Number of parallels	0	1	2
Shape	elliptic (spheric)	flat	hyperbolic (saddle)

Finally in the $19^{\text {th }}$ century

- Nikolai Ivanovich Lobachevsky, 1792-1856
- János Bolyai, 1802-1860
- Bernhard Riemann, 1826-1866

Hyperbolic geometry

Elliptic geometry

What is a function?

- $x^{2}+3 x-4$?
- $f(x)=x^{2}+3 x-4$?
- $y=f(x)$?
- $y=f(x)$ where $x^{2}+y^{2}=1$?
- $f(n)=|\{p: p \in \mathbb{P} \wedge p \leq n\}|$?
- ???

Examples for functions
$m=2 n$

- independent variable: n
- domain: \mathbb{N}
- dependent variable: m
- range: $2 \mathbb{N}(\mathbb{N})$
- graph: $\{(n, 2 n): n \in \mathbb{N}\}$

Examples of functions
$S_{n}=S(n)=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n(n+1)(2 n+1)}{6}$

- independent variable: n
- domain: $\mathbb{N} \backslash\{0\}$
- dependent variable:(S)
- range: $\subset \mathbb{N}$
- graph: $\left\{\left(n, \frac{n(n+1)(2 n+1)}{6}\right): n>0\right\}$

Example:: $f(x)=\frac{1}{x}$

- independent variable: x, domain: $\mathbb{R} \backslash\{0\}$
- dependent variable: $(f(x))$, range: $\mathbb{R} \backslash\{0\}$
- graph: $\left\{\left(x, \frac{1}{x}\right): x \in \mathbb{R} \backslash\{0\}\right\}$

Example: $y=x^{2}$

- independent variable: x, domain: \mathbb{R}
- dependent variable: y, rangeL $\mathbb{R}^{\geq 0}$
- graph: $\left\{\left(x, x^{2}\right): x \in \mathbb{R}\right\}$

- $y=2 x+1$
- independent variable \leftrightarrow dependent variable
- $x=\frac{y-1}{2}$
- domain \leftrightarrow range
- graph: reflection on $y=x$

Inverse function cont.
The inverse function exists if $\forall y \exists!x f(x)=y$ holds.
$y=x^{2}: 3^{2}=9=(-3)^{2}$

Functions with multiple variables

- independent variables: (e.g., x, y)
- domain: (e.g., $\mathbb{R} \times \mathbb{R}$)
- dependent variable (e.g., z)
- range: (e.g., \mathbb{R})
- graph (e.g., $\{(x, y, z): z=\cos (2 \pi x) \times \sin (2 \pi y)\})$
$f(x)=\sin \frac{1}{x}$
- independent function: x, domain: $\mathbb{R} \backslash\{0\}$
- dependent function: $(f(x))$, range: $[-1,1]$
- graph: $\left\{\left(x, \sin \frac{1}{x}\right): x \in \mathbb{R} \backslash\{0\}\right\}$

Sequence and rational numbers

- (repetition) Between any two different rational numbers x and y, there is another rational number. - denseness, dense
- Is the limit if any sequence of rational numbers again rational?

$$
3<3.1<3.14<3.141<\cdots<\pi<\cdots<3.142<3.15<3.2<4
$$

Sequences, limits, convergence

Sequence
$\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle$
A function with \mathbb{N} as domain: $a_{n}=a(n)$
Convergence

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots
$$

If n grows infinitely big, $\frac{1}{n}$ will approach 0
Notation: $\lim _{n \rightarrow \infty} \frac{1}{n}=0$

The meaning of convergence

- $a_{n} \rightarrow a: a_{n}$ eventually comes arbitrary close to a.
- However small a neighborhood of a we choose, from some point onward all a_{n} fall into this nbh.
- $a_{n}=\frac{1}{n}$

If the nbh is $(-0.1,0.1)$, then $n>10$
If the nbh is $(-0.01,0.01)$, then $n>100$
If the nbh is $(-0.001,0.001)$, then $n>1000$

Definition of convergence
For all $\varepsilon>0$, there is a natural number N, such that for all $n>N,\left|a_{n}-a\right|<\varepsilon$

Karl Weierstraß

- German mathematician
- 1815-1897

Limits and continuity

$f(x)=1+x / 2 \quad x>0$
$f(x)=-1+x / 2 \quad x \leq 0$

$f(x)=\frac{1}{x^{2}}$

- $\lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow 0} \frac{\sin x}{x}=? \quad \cos x<\frac{\sin x}{x}<1, \quad 0<x<\frac{\pi}{2}$

Continuous functions

f is continuous in c iff
for any arbitrary positive number ε, there is a positive number δ,
such that for all x such that $0<|x-c|<\delta$ holds, also
$|f(x)-L|<\varepsilon$ holds. $(L=f(c))$

Convergence and continuity

Convergence

$$
\forall \varepsilon>0 \exists N \forall n>N\left|a_{n}-a\right|<\varepsilon
$$

Continuity

$$
\forall \varepsilon>0 \exists \delta>0 \forall x \in(c-\delta, c+\delta)|f(x)-L|<\varepsilon
$$

$\varepsilon-\delta$ definitions

Example of a continuous functions
$f(x)=x^{3}, c=2$

Series

For a sequence of numbers a_{1}, a_{2}, \ldots, let

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{n}
$$

Example: $a_{n}=\frac{1}{10^{n}}$

$$
\begin{array}{ll}
s_{1}=a_{1} & =0.1 \\
s_{2}=a_{1}+a_{2} & =0.11 \\
s_{3}=a_{1}+a_{2}+a_{3} & =0.111 \\
s_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n} & =0.1111 \ldots 1
\end{array}
$$

$$
\lim _{n \rightarrow \infty} s_{n}
$$

Various answers

- $1-1+1-1+1-1+\ldots$
- Answer 1: $(1-1)+(1-1)+(1-1)+\cdots=0$
- Answer 2: $1-(1-1)-(1-1)-(1-1)-\cdots=1$
- Answer 3: $1+1-1+1-1+1-1+\cdots=\cdots=2$
- $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \rightarrow \infty$
- $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots \rightarrow 1$
$-1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \rightarrow \frac{\pi^{2}}{6}$

Example for a power series

$$
\begin{aligned}
\sin (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\end{aligned}
$$

Series and functions

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\ldots \quad(|x|<1)
$$

Power series

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots
\end{aligned}
$$

How can we find the power series?
If

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists, then $f(x)$ is differentiabl at a.

- $f(x)=3 x+1$?
- $f(x)=x^{3}-5 x^{2}+3 x-1$?
- $f(x)=|x|$?

Development of power series, Taylor series
Oscillating differentiable function $f(x)$

$$
\begin{aligned}
& f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\ldots \\
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \\
& \frac{1}{1+x}=1-x+x^{2}-x^{3}+\ldots \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
\end{aligned}
$$

Conditions on the existence of power series

- For all n, the differential $f^{(n)}(a)$ exists.
$-\lim _{n \rightarrow \infty} \frac{f^{(n)}(\theta x)}{n!} x^{n}=0,(0<\theta<1)$

Fourier series

Periodic function

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k k_{\theta}\right)(x)
$$

Electronic, accustic, optic, signal processing. .

Sources

Wikimedia, partly CC BY 3.0 (Appollonius problem, user WillowW)
Fibonacci spiral: http://www.mathsisfun.com/

