L211 Logic and Mathematics

11. Lecture

Norbert PREINING
preining@jaist.ac.jp
http://www.preining.info/jaist/l211/2015e/

Formalization of number theory

- 0 is the first natural number.
- If x is a natural number, then also $s(x)$,
- If x and y are natural numbers, so are $x+y$ and $x \times y$.

Does this really give \mathbb{N} ?
Condition: All natural numbers are only constructed from 0 and $s(x)$.

Mathematical induction
$[0 \in A \wedge \forall x(x \in A \rightarrow s(x) \in A)] \rightarrow \forall x(x \in \mathbb{N} \rightarrow x \in A)$

Axiomatic method

Peano axioms

Giuseppe Peano

- Italian mathematician
- 1858-1932
- Russel - Peano

Peano axioms

- $s(x) \neq 0, s(x)=s(y) \rightarrow x=y$
- $x+0=x, x+s(y)=s(x+y)$
- $x \times 0=0, x \times s(y)=(x \times y)+x$
- $[\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(s(x)))] \rightarrow \forall x \phi(x)$

Question: Is the Peano axiom system free of contradictions (consistent)? - And how to prove it?

Consistent means we cannot prove $0=1$
Is it ok to use set theory to prove consistency? - no!

Peano axiom system - GÖdels
Incompleteness theorem
Gödel's Incompleteness Theorem
For any ω-consistent theory that includes the natural numbers and induction, there are true statements that can neither proved nor disproved.

Fundamental THEOREMS

- Gödel's completeness theorem, 1929

Provability and semantical truth of first order predicate logic coincides.

- Church's thesis, 1936

Every computable function is recursive.
There is no algorithm to decide the truth of an arbitrary statement of first order predicate logic.

Geometry as axiom systems
 Non-Euclidean Geometry

Condition: ω-consistent

Consequence

In Peano's system there are statements that are true but cannot be proved (nor disproved)

Axiom system

- Undefined concepts

Example: Peano: 0,s

- Axioms

Example: Peano: $s(x) \neq 0$

- Inference rules

Example: Peano: Induction

Constructions with compass and RULER
(STRAIGHTEDGE)

- ruler: connecting two points with a straight line (no measuring!)
- compass: draw a circle around a center

Basic constructions: 'axioms'

- For two given different points, draw the straight line through these points.
- For two given different points, use one as center and draw a circle through the other.
- For two non-parallel lines, determine the intersection point.
- For a given circle and a straight line, determine the intersection points (at most 2).
- For two given points. determine the intersection points (at

What can be con

- straight line
- center point
- half of an angle
- polygons: for which n ?
- Problem of Apollonius

Apollonios of Perge

- Greek mathematician and astronomer
- 262BC-190BC
- conic curves
ellispe, parabola, hyperbola

Questions, Questions, Questions
Problems couldn't be constructed since the Greek times

- Construct a square with the same area as a given circle.
- Construct a cube with double the volume of a given cube.
- Trisect a given angle

Karl Friedrich Gauss

- Germany, 1777-1855
- Mathematician, astronomer, physicist
- Princeps mathematicorum

GAUSS AND THE POLYGONS

In the 1796, at the age of 19
A regular n-Polygon can be constructed with compass and ruler only
\downarrow
$n=2^{k} p_{1} p_{2} \ldots p_{t}, \quad k, t>0, p_{i}$ Fermat prime

- Fermat primes: $F_{n}=2^{\left(2^{n}\right)}+1(3,5,17,257)$
- F_{5}, \ldots, F_{32} is not a real prime!
- $n=3,4,5,6,8,10,12,15,16,17,20,24, \ldots$ can be constructed

Sources

Wikimedia, partly CC BY 3.0 (Appollonius problem, user WillowW)

