L211 Logic and Mathematics

8. Lecture

Norbert PREINING
preining@jaist.ac.jp
http://www.preining.info/jaist/l211/2015e/

Important points

- finite decimal, recurring decimals
- $\pi=3.1415926535$..

Homework

- Dedekind cut
- Base 10 number system
- Positional notation system
- Base 2, Base 16, Base 12, Base 60, Base 20, Base 27

Logic

From set theory to symbolic logic

Infinite sets

Number of elements

- Are there more elements in \mathbb{Q} than in \mathbb{N} ?
- Are there more elements in \mathbb{R} than in \mathbb{Q} ?

Possible answers
A1 all these sets are infinite, one cannot count them, so the above question does not make sense
A2 because $\mathbb{N} \subset \mathbb{Q} \subset \mathbb{R}$, the right side always has more elements than the left one

Hilbert's Infinite Hotel

The Hotel
A hotel with infinitely many rooms - for each natural number one
But all the rooms are occupied!

- k new guests want to stay over night - how should that be done?
- countable many new guests want to stay over night - how can we do that?

INJECTIVE AND SURJECTIVE

map:

- injective: a one to one mapping
- surjective: all elements are covered
- bijective: injective and surjective

Examples for Equal cardinality

- $(-1,1)$ and $(0,1)$ have equal cardinality
- Square numbers and natural numbers have equal cardinality - Galileo Galilei

INFINITE AND COUNTABLE INFINITE

- $A \preceq B$: there is an injection $f: A \rightarrow B$
- Cantor-Bernstein theorem:
$A \preceq B$ and $B \preceq A$, then $A \cong B$
- If $A \subseteq B$, then $A \preceq B$
- If $\mathbb{N} \preceq A$, then A is called infinite.
- If $\mathbb{N} \cong A$, then A is countable infinite.

Georg Cantor

- *1845 St. Petersburg (Russia)
- $\dagger 1918$ Halle (Germany)
- German Mathematician
- Set theory
- Continuum hypothesis

ExAMPLES FOR COUNTABLE INFINITE

- even numbers
- primes
- $\mathbb{N} \times \mathbb{N}$
- \mathbb{Q}

The number of natural numbers and REALS
$\mathbb{N} \neq \mathbb{R}$

- $(0,1) \cong \mathbb{R}: \tan \pi(x-1 / 2)$
- diagonal argument
$\mathbb{I} \cong \mathbb{R}$
- Since \mathbb{I} is infinite, there is a set \mathbb{J} such that $\mathbb{I} \cong \mathbb{J}+\mathbb{N}$ ($A+B$ disjoint union)
- thus, $\mathbb{R}=\mathbb{I}+\mathbb{Q} \cong \mathbb{J}+\mathbb{N}+\mathbb{Q} \cong \mathbb{J}+\mathbb{N} \cong \mathbb{I}$

