L211 Logic and Mathematics

8. Lecture

Norbert PREINING preining@jaist.ac.jp

http://www.preining.info/jaist/1211/2015e/

Last lectures Numbers, number systems

IMPORTANT POINTS

- finite decimal, recurring decimals
- ► $\pi = 3.1415926535...$
- Dedekind cut
- ► Base 10 number system
- Positional notation system
- ▶ Base 2, Base 16, Base 12, Base 60, Base 20, Base 27

Homework

Logic

From set theory to symbolic logic

Infinite sets

NUMBER OF ELEMENTS

- Are there more elements in \mathbb{Q} than in \mathbb{N} ?
- Are there more elements in \mathbb{R} than in \mathbb{Q} ?

Possible answers

- A1 all these sets are infinite, one cannot count them, so the above question does not make sense
- A2 because $\mathbb{N}\subset\mathbb{Q}\subset\mathbb{R},$ the right side always has more elements than the left one

HILBERT'S INFINITE HOTEL

The Hotel

A hotel with infinitely many rooms – for each natural number one

But all the rooms are occupied!

- k new guests want to stay over night how should that be done?
- countable many new guests want to stay over night how can we do that?

INJECTIVE AND SURJECTIVE

map:

- ▶ injective: a one to one mapping
- surjective: all elements are covered
- bijective: injective and surjective

Counting infinite sets

Equal cardinality

Take two sets A, B

If there is a bijection $A \rightarrow B$, then A and B have equal cardinality: $A \cong B$

In case of finite sets, this means equal number of elements.

- $f: A \rightarrow B$ is an injection \Leftrightarrow if $x \neq y$ then $f(x) \neq f(y)$
- f: A → B is a surjection ⇔
 for all y ∈ B there is an x ∈ A such that y = f(x).

EXAMPLES FOR EQUAL CARDINALITY

- (-1,1) and (0,1) have equal cardinality
- Square numbers and natural numbers have equal cardinality

 Galileo Galilei

INFINITE AND COUNTABLE INFINITE

- $A \preceq B$: there is an injection $f : A \rightarrow B$
- Cantor-Bernstein theorem: $A \preceq B$ and $B \preceq A$, then $A \cong B$
- ▶ If $A \subseteq B$, then $A \preceq B$
- If $\mathbb{N} \preceq A$, then A is called infinite.
- If $\mathbb{N} \cong A$, then A is countable infinite.

EXAMPLES FOR COUNTABLE INFINITE

- even numbers
- primes
- $\blacktriangleright \ \mathbb{N} \times \mathbb{N}$
- ► Q

GEORG CANTOR

- *1845 St. Petersburg (Russia)
- ► †1918 Halle (Germany)
- German Mathematician
- Set theory
- Continuum hypothesis

THE NUMBER OF NATURAL NUMBERS AND REALS

$\mathbb{N} \neq \mathbb{R}$

- $(0,1) \cong \mathbb{R}$: tan $\pi(x-1/2)$
- diagonal argument

$\mathbb{I}\cong\mathbb{R}$

- Since I is infinite, there is a set J such that I ≅ J + N (A + B disjoint union)
- \blacktriangleright thus, $\mathbb{R}=\mathbb{I}+\mathbb{Q}\cong\mathbb{J}+\mathbb{N}+\mathbb{Q}\cong\mathbb{J}+\mathbb{N}\cong\mathbb{I}$