L211 Logic and Mathematics

5. Lecture

Norbert PREINING preining@jaist.ac.jp

http://www.preining.info/jaist/1211/2015e/

Last lecture Induction

IMPORTANT POINTS

- write down that you use induction
- state the predicate/property you are going to prove
- ▶ prove *P*(0)
- ▶ prove $P(n) \rightarrow P(n+1)$
- ▶ qed \Box
- ► the assumption needs to be used
- induction is not persuasion

Homework

TILING A $2^n \times 2^n$ SIZED GARDEN

CONCLUSION

Example 8-Puzzle

Sometimes it is better to use a stronger induction hypothesis!

Example

Stone Garden

8-Puzzle

How about this one?

Finished!

Row move

COLUMN MOVE

Where is the difference? the order changes!

ROW MOVE

Row move

Lemma: During a row move, the order of all pairs remain the same.

COLUMN MOVE

COLUMN MOVE

Lemma: During a column move, the ordering of two pairs changes.

INVERTED PAIRS: HOW MANY INVERSIONS ARE THERE?

THEOREM

The parity of the number of order inversions does not change with any move.

(If it is even at the beginning, it remains even.)

Proof:

- During a row move, the number of inversions does not change.
- During a column move, the number of inversions changes by $+2, \pm 0, \text{ or } -2.$

APPLYING THE THEOREM

Number of order inversions: 1 Number of order inversions: 0

Thus, the left puzzle cannot be solved.

CONCLUSION

In case of recurrence/iterations, one needs to find a non-changing property and prove that it doesn't changes (parity in this case).

INDUCTION PRINCIPLE

For a property P(n) of natural numbers, if

P(0) holds

and

for all natural numbers n, P(n)
ightarrow P(n+1) holds

then

P(n) holds for all natural numbers, that is $\forall nP(n)$ holds.

ANOTHER METHOD – STRONG INDUCTION

P(0) holds

and

if for all k less than n, P(k) holds, then also P(n) holds

then

P(n) holds for all natural numbers, that is $\forall nP(n)$ holds.

Example

Breaking down towers