L211 Logic and Mathematics

5. Lecture

Last lecture

Norbert PREINING
Induction
http://www.preining.info/jaist/1211/2015e/

Important points

- write down that you use induction
- state the predicate/property you are going to prove

Homework

- prove $P(0)$
- prove $P(n) \rightarrow P(n+1)$
- qed \square
- the assumption needs to be used
- induction is not persuasion

TILING A $2^{n} \times 2^{n}$ SIZED GARDEN

Example

Stone Garden

Conclusion

Example

8-Puzzle
Sometimes it is better to use a stronger induction hypothesis!

A	B	B
A	B	E
G	A	F

Finished!

A	B	C
D	E	F
H	G	

Column move

A	E	B
D	E	C
G	H	F

Where is the difference? the order changes!

Row move

A^{1}	E^{2}	B^{3}
	D^{4}	C^{5}
	G^{6}	H^{7}
	F^{8}	

Column move

A^{1}	E^{2}	B^{3}
D^{4}		C^{5}
G^{6}	H^{7}	F^{8}

Row move

A^{1}	E^{2}	B^{3}
D^{4}		C^{5}
G^{6}	H^{7}	F^{8}

Lemma: During a row move, the order of all pairs remain the same.

Column move

A^{1}		B^{2}
D^{3}	E^{4}	C^{5}
G^{6}	H^{7}	F^{8}

Lemma: During a column move, the ordering of two pairs changes.

Inverted pairs: How many inversions

ARE THERE?

| A^{1} | B^{2} | C^{3} |
| :--- | :--- | :--- | :--- |
| D^{4} | E^{5} | F^{6} |
| G^{8} | H^{8} | F^{8} |
| | | |

Applying the theorem

Number of order inversions: 1 Number of order inversions: 0

Thus, the left puzzle cannot be solved.

Theorem

The parity of the number of order inversions does not change with any move.
(If it is even at the beginning, it remains even.)
Proof:

- During a row move, the number of inversions does not change.
- During a column move, the number of inversions changes by $+2, \pm 0$, or -2 .

Conclusion

In case of recurrence/iterations, one needs to find a non-changing property and prove that it doesn't changes (parity in this case).

INDUCTION PRINCIPLE

For a property $P(n)$ of natural numbers, if

$P(0)$ holds
 and

for all natural numbers $n, P(n) \rightarrow P(n+1)$ holds
then
$P(n)$ holds for all natural numbers, that is $\forall n P(n)$ holds.

ANOTHER METHOD - STRONG INDUCTION

$P(0)$ holds
 and

if for all k less than $n, P(k)$ holds, then also $P(n)$ holds
then
$P(n)$ holds for all natural numbers, that is $\forall n P(n)$ holds.

Example

 Breaking down towers