L211 Logic and Mathematics

4. Lecture

Norbert PREINING

preining@jaist.ac.jp

www.preining.info/jaist/1211/2015e/

IMPORTANT POINTS

- \blacktriangleright \land , \lor , \rightarrow , \neg , \forall , \exists
- $ightharpoonup \neg \forall n P(n) \Leftrightarrow \exists n \neg P(n)$
- necessary, sufficient, neccessary and sufficient
- ► truth tables
- ▶ direct proof method
- ▶ contraposition: $A \rightarrow B$ \Leftrightarrow $\neg B \rightarrow \neg A$
- proof by contradiction

Last lecture Proofs

Induction

PRINCIPLE OF INDUCTION

Considering a proposition P(n)

Show that P(0) hold

and

show that for all natural numbers n, $P(n) \rightarrow P(n+1)$ holds.

Then

P(n) holds for all natural numbers.

Example

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

Rule of induction

$$\frac{P(0) \qquad \forall n \in \mathbb{N} : P(n) \to P(n+1)}{\forall k \in N : P(k)}$$

Conclusion 1

- write down that you use induction
- write down what is the sentence you want to prove
- ▶ prove *P*(0)
- ▶ prove $P(n) \rightarrow P(n+1)$
- ▶ qed □

Example

$$\sum_{i=1}^n \frac{1}{i(i+1)} = \frac{n}{n+1}$$

Example

$$3|(n^3-n)$$

Conclusion 2

Example Everyone loves Funazushi!

One needs to use the assumption

FUNAZUSHI

Proposition P(n)

Within a group of n people, everyone has the same feeling regarding Funazushi.

Conclusion

I like Funazushi thus everyone likes Funazusi.

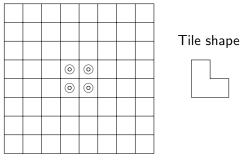
Example

The center of a stone garden

Conclusion 3

Don't get tricked! It is not about convincing each other!

Let's plaster a $2^n \times 2^n$ stone garden with tiles



All $2^n \times 2^n$ stone gardens can be tiled, so that in the center one piece remains.

Conclusion 4

Sometimes it is better to use a stronger induction hypothesis!

Next lesson More induction