L211 Logic and Mathematics
3. Lecture

Norbert PREINING preining@jaist.ac.jp
www.preining.info/jaist/1211/2015e/

Important points

- fundamental theorem of arithmetic
- prime number theorem
the frequency of prime number in the natural numbers is

$$
\pi(n) \sim \frac{n}{\ln n}
$$

- Goldbach Conjecture

Every even number bigger than 2 can be represented as the sum of two prime numbers.

- Completion:
subtraction: $\mathbb{N} \rightarrow \mathbb{Z}$
division: $\mathbb{Z} \rightarrow \mathbb{Q}$
root: $\mathbb{Q} \rightarrow \mathbb{A}, \mathbb{A} \rightarrow \mathbb{R}, \mathbb{R} \rightarrow \mathbb{C}$

Last lecture

From counting to the science of patterns

From the dictionary ...

Evidence or argument establishing or helping to establish a fact or the truth of a statement.

Convince others of the correctness

ALL KINDS OF PROOF TYPES

- Proof by trivialization: ‘such a trivial thing does not need a proof'
- proof by usefulness: 'it would be so good if this is true'
- proof by necessity: 'if this is not true, that would be the end'
- proof by intimidation: 'don't be stupid, it's true, obviously!'
- proof by (wrong) analogy: 'that looks a bit like this one, thus it's true
- proof by intuition: 'I have the feeling it's true
- proof by authority: ' $X X X$ has said it's true'

Last but not least ...

Mathematical proof

- confirm the correctness
- deduction/inference
- from axioms
- from already proven theorems or lemmas
- each single step can be checked
- written so that it can be understood

TRUE

Mathematical truth and falsity

A proposition is either true or false. (No half-true!)

Connecting propositions

\vee	or	(disjunction)	$A \vee B$
\wedge	and	(conjunction)	$A \wedge B$
\rightarrow	implies	(implication)	$A \rightarrow B$
\neg	not	(negation)	$\neg A$

NECESSARY, SUFFICIENT, AND BOTH
necessary $\quad A$ is a necessary condition for B $x^{2}=1$ is necessary for $x=1$ $B \rightarrow A$
sufficient $\quad A$ is a sufficient condition for B
$x=1$ is sufficient for $x^{2}=1$
$A \rightarrow B$
both
necessary and sufficient condition $A \leftrightarrow B$

A	B	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

A	B	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Truth table exercise

$$
(P \vee Q) \rightarrow R
$$

A	B	$A \leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Quantifiers
universal quantifier
symbol: $\forall \quad$ 'for all'..
Example: $\forall n \in \mathbb{N}: P(x)$
For all natural number $n, P(n)$ (holds)
existential quantifier
symbol: $\exists \quad$ 'exists'..
example: $\exists n \in \mathbb{N}: P(x)$
There is a natural number n such that $P(n)$ (holds).
Other operators: \exists !
negation of 'for all $n, P(n)^{\prime} \ldots$

$$
\neg \forall n P(n)
$$

becomes 'there is an n such that $\neg P(n)$ '

$$
\begin{array}{lll}
\neg \forall n P(n) & \Leftrightarrow & \exists n \neg P(n) \\
\neg \exists n P(n) & \Leftrightarrow & \forall n \neg P(n)
\end{array}
$$

DIRECT PROOF

Theorem
If for two sets A and B we have that $A \subseteq B$ and $B \subseteq A$, then we also have $A=B$.

Proof

- (1) If $x \in A$, then due to $A \subseteq B$, also $x \in B$.
- By (1), all $x \in A$ are also $\in B$.
- (2) If $x \in B$, then due to $B \subseteq A$, also $x \in A$.
- By (2), all $x \in A$ are also $\in B$.
- By (1) and (2), we have $A=B$.

Proof methods

DIRECT PROOF

Theorem
$(A \subseteq B) \wedge(B \subseteq A) \Rightarrow(A=B)$
Proof

- (1) $x \in A \wedge A \subseteq B \Rightarrow x \in B$
- (2) $x \in B \wedge B \subseteq A \Rightarrow x \in A$
- $(1) \wedge(2) \Rightarrow A=B$

Proof By Contraposition

Direct proof

$$
\text { Assumption } \Longrightarrow \text { Conclusion }
$$

Assuming the Assumption, we proof the Conclusion.
Basic pattern of the contraposition

$$
A \rightarrow B \quad \Leftrightarrow \quad \neg B \rightarrow \neg A
$$

Assuming the negation of the conclusion, we prove the negation of the assumption

EXAMPLE OF CONTRAPOSITION

Theorem (n natural number)
If n^{2} is even, then also n is even.
formula of the contraposition
If n is not even, then n^{2} is also not even.
Proof

$$
\begin{aligned}
n \text { is not even } n & =2 k+1 \text { is assumed } \\
n^{2} & =(2 k+1)^{2} \\
n^{2} & =4 k^{2}+4 k+1 \\
n^{2} & =2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

thus n^{2} is not even, too.

A	B	$A \rightarrow B$	$\neg A$	$\neg B$	$\neg B \rightarrow \neg A$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	1	1	0	0	1

Proof By contradiction
basic pattern
If we can deduce a contradiction assuming A, then A is false.
Example
$\sqrt{2}$ is an irrational number.
Proof
Assume $\sqrt{2}$ is a rational number ...

Homework

Infinity of primes
The are infinitely many prime numbers.
Proof
Assume there are only finitely many primes, then ...

SUMMARY

- Concept of proof in the society and in science is different
- Proofs go from axioms step by step
- there are various different proof methods

Exercise sheet
Wednesday lecture: Induction

Sources

- Ring: http:
//www.fotocommunity.de/pc/pc/display/29133067

