L211 Logic and Mathematics

3. Lecture

Norbert PREINING preining@jaist.ac.jp www.preining.info/jaist/l211/2015e/ Last lecture

From counting to the science of patterns

IMPORTANT POINTS

- fundamental theorem of arithmetic
- prime number theorem

the frequency of prime number in the natural numbers is

$$\pi(n) \sim \frac{n}{\ln n}$$

Goldbach Conjecture

Every even number bigger than 2 can be represented as the sum of two prime numbers.

► Completion: subtraction: $\mathbb{N} \to \mathbb{Z}$ division: $\mathbb{Z} \to \mathbb{Q}$ root: $\mathbb{Q} \to \mathbb{A}$, $\mathbb{A} \to \mathbb{R}$, $\mathbb{R} \to \mathbb{C}$ Proof

FROM THE DICTIONARY ...

Evidence or argument establishing or helping to establish a fact or the truth of a statement.

Convince others of the correctness.

All kinds of proof types

- Proof by trivialization: 'such a trivial thing does not need a proof'
- proof by usefulness: 'it would be so good if this is true'
- proof by necessity: 'if this is not true, that would be the end'
- proof by intimidation: 'don't be stupid, it's true, obviously!'
- proof by (wrong) analogy: 'that looks a bit like this one, thus it's true'
- proof by intuition: 'I have the feeling it's true'
- proof by authority: 'XXX has said it's true'

Last but not least ...

proof by love: 'I got a ring from my lover, so'

MATHEMATICAL PROOF

- confirm the correctness
- deduction/inference
 - from axioms
 - from already proven theorems or lemmas
 - each single step can be checked
- written so that it can be understood

TRUE

A proposition is either true or false. (No half-true!)

Connecting propositions

\vee	or	(disjunction)	$A \lor B$
\wedge	and	(conjunction)	$A \wedge B$
_	implies	(implication)	A ightarrow B
_	not	(negation)	$\neg A$

NECESSARY, SUFFICIENT, AND BOTH

necessary	A is a necessary condition for B $x^2 = 1$ is necessary for $x = 1$ $B \rightarrow A$
sufficient	A is a sufficient condition for B $x = 1$ is sufficient for $x^2 = 1$ $A \rightarrow B$
both	necessary and sufficient condition $A \leftrightarrow B$

TRUTH TABLES

	basic values	A	$\neg A$
true	1	0	1
false	0	1	0

Mathematical truth and falsity

Truth tables 2

A	В	$A \lor B$	/	4	В	$A \wedge B$	Α	В	$A \rightarrow B$
0	0	0	()	0	0 0 0 1	0	0	1 1
0	1	0 1	()	1	0	0	1	1
1	0	1	-	1	0	0	1	0	0 1
1	1	1	-	1	1	1	1	1	1

QUANTIFIERS

universal quantifier

symbol: \forall 'for all'... Example: $\forall n \in \mathbb{N} : P(x)$ For all natural number *n*, P(n) (holds)

existential quantifier

symbol: \exists 'exists'... example: $\exists n \in \mathbb{N} : P(x)$ There is a natural number *n* such that P(n) (holds).

Other operators: $\exists !$

Truth table exercise

 $(P \lor Q) \to R$

RELATION BETWEEN QUANTIFIERS

negation of 'for all $n, P(n)' \dots$

 $\neg \forall n P(n)$

becomes 'there is an *n* such that $\neg P(n)$ '

 $\neg \forall n P(n) \quad \Leftrightarrow \quad \exists n \neg P(n)$ $\neg \exists n P(n) \quad \Leftrightarrow \quad \forall n \neg P(n)$

Proof methods

DIRECT PROOF

Theorem

If for two sets A and B we have that $A \subseteq B$ and $B \subseteq A$, then we also have A = B.

Proof

- (1) If $x \in A$, then due to $A \subseteq B$, also $x \in B$.
- By (1), all $x \in A$ are also $\in B$.
- (2) If $x \in B$, then due to $B \subseteq A$, also $x \in A$.
- By (2), all $x \in A$ are also $\in B$.
- By (1) and (2), we have A = B.

DIRECT PROOF

Theorem $(A \subseteq B) \land (B \subseteq A) \Rightarrow (A = B)$

Proof

- (1) $x \in A \land A \subseteq B \Rightarrow x \in B$
- (2) $x \in B \land B \subseteq A \Rightarrow x \in A$
- ▶ (1) \land (2) \Rightarrow A = B

PROOF BY CONTRAPOSITION

Direct proof

$\mathsf{Assumption} \implies \mathsf{Conclusion}$

Assuming the Assumption, we proof the Conclusion.

Basic pattern of the contraposition

 $A \rightarrow B \qquad \Leftrightarrow \qquad \neg B \rightarrow \neg A$

Assuming the negation of the conclusion, we prove the negation of the assumption.

CONFIRMATION OF THE CONTRAPOSITION

A	В	$A \rightarrow B$	¬A	$\neg B$	$\neg B \rightarrow \neg A$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	1	1	0	0	1

EXAMPLE OF CONTRAPOSITION

Theorem (*n* natural number) If n^2 is even, then also *n* is even.

formula of the contraposition

If *n* is not even, then n^2 is also not even.

Proof

n is not even
$$n = 2k + 1$$
 is assumed

$$n^2 = (2k + 1)^2$$

$$n^2 = 4k^2 + 4k + 1$$

$$n^2 = 2(2k^2 + 2k) + 1$$
thus n^2 is not even, too.

PROOF BY CONTRADICTION

basic pattern

If we can deduce a contradiction assuming A, then A is false.

Example $\sqrt{2}$ is an irrational number.

Proof Assume $\sqrt{2}$ is a rational number ...

Homework

Infinity of primes

The are infinitely many prime numbers.

Proof

Assume there are only finitely many primes, then

SUMMARY

- Concept of proof in the society and in science is different
- Proofs go from axioms step by step
- there are various different proof methods

Exercise sheet

Wednesday lecture: Induction

Sources

 Ring: http: //www.fotocommunity.de/pc/pc/display/29133067