L211 Logic and Mathematics
2. Lecture

Norbert PREINING
preining@jaist.ac.jp
www.preining.info/jaist/1211/2015e/

Last weeks lecture
Mathematics in the $20^{\text {th }}$ century

Today's lecture

From high school math to university math From calculation to a science of patterns

Calculation

School math
find x

$$
x^{2}+x-2=0
$$

Trigonometry and geometry

3. Find x.

What is the probability?

Diophantine Equations

University math
Linear equation

$$
a x+b y=c \quad \text { such that } a, b, c \text { are integers }(\in \mathbb{Z})
$$

What are the conditions for a, b, c ?
$-c$ needs to be a divisor of the gcd of a and b

Patterns

Notes and Music

$$
\begin{aligned}
\left|Q\left(t_{1}, T\right)\right| & \leq \frac{1}{\epsilon_{0}} \int_{t_{1}}^{T} \int_{M} e^{\psi} H \\
& =\frac{1}{\epsilon_{0}}\left\{\left|M\left(t_{1}\right)\right|-|M(T)|\right\} \\
& \leq \frac{1}{\epsilon_{0}}\left|M\left(t_{1}\right)\right| .
\end{aligned}
$$

Theory of Patterns

\Downarrow
pattern of shapes and forms
geometry

pattern of dispute/discussion
logics

\Downarrow
pattern of dynamics

\Downarrow
pattern of position topology

Recapitulation

School calculation - search for solution

University abstraction and generalization

First generalization

From natural numbers to reals

First step

Cattle Count, Ancient Egypt. From Lepsius Denkmahler

FINGER COUTING

- finger counting
- touchable objects
first generalization natural number - any set of objects of the same count
$6=$ the set of all 'things' of 6 elements
From now on, let us take 6 as simply 6 ;-)
- 1823-1891
- German mathematician

Thonedker

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.

PRIME NUMBERS
any number that is only divisible by 1 and itself
Fundamental theorem of arithmetic
Every natural number has exactly one representation as product of primes

Prime number factorization
Sieve of Eratosthenes
factorization of big numbers is difficult - public key encryption

- Number of primes? infinite - proof? - homework
- Prime number theorem

What is the rate of prime numbers?

$$
\pi(n) \sim \frac{n}{\ln n}
$$

n	$\pi(n)$	$\frac{n}{\ln n}$	$\frac{\pi(n)}{x / \ln x}$
10	4	$4.34 \ldots$	$0.921 \ldots$
100	25	$21.71 \ldots$	$1.151 \ldots$
10000	1229	$1085.73 \ldots$	$1.1320 \ldots$
100000	9592	$8685.89 \ldots$	$1.1043 \ldots$
1000000	78498	$72382.41 \ldots$	$1.0845 \ldots$
10000000	664579	$620420.69 \ldots$	$1.0712 \ldots$
100000000	5761455	$5428681.02 \ldots$	$1.0613 \ldots$

From positive to negative numbers

- Addition is total

For any a and b, the addition $a+b$ is defined.

- What about subtraction?

- Completion with respect to subtraction: $\mathbb{N} \rightarrow \mathbb{Z}$
- Goldbach Conjecture

Every even number bigger than 2 can be expressed as the sum of two primes.
true for $n \leq 4 \times 10^{18}$

From Integers to Rational Number

- Distribution of a birthday cake into 5 pieces
- Current state: For all integers a, b $a+b, a-b, a \times b$ are defined

- Completion with respect to division: $\mathbb{Z} \rightarrow \mathbb{Q}$

$$
\begin{array}{rlrl}
\text { Addition } & \frac{a}{b}+\frac{c}{d} & =\frac{a d+b c}{b d} \\
\text { Multiplication } & \frac{a}{b} \times \frac{c}{d} & =\frac{a c}{b d} \\
\text { Division } & \frac{a}{b} \div \frac{c}{d} & =\frac{a d}{b c} \\
\frac{\frac{a}{c}}{d} & =\frac{a d}{b c}
\end{array}
$$

A BIT IRRATIONAL AND VERY IRRATIONAL

- $a_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+a_{0}=0$ with $a_{k} \in \mathbb{Q}$
- algebraic numbers - solutions of polynoms with rational coefficients \mathbb{A}
- completion with respect to rational polynoms: $\mathbb{Q} \rightarrow \mathbb{A}$
- $\sqrt{2}$?
- Current status: For all rationals a, b $a+b, a-b, a \times b, a \div b$ is defined.

- For any real number r - approximation with rational numbers is possible
- decimal notation system
- $\sqrt{-1}$?
- Current status: for all real numbers a, b $a+b, a-b, a \times b, a \div b$ is defined.
- completion with respect to solving polynomial equations: $\mathbb{R} \rightarrow \mathbb{C}$
- And after that? Quaternions

Recapitulation

- School Mathematics and University Mathematics are different
- Theory of patterns
- Discovery of patterns of numbers
- Abstraction and generalization
$\mathbb{N} \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{A} \rightarrow \mathbb{R} \rightarrow \mathbb{C} \rightarrow \mathbb{H}$

Next lecture Proofs

HomeworkNumber of primes?

Sources

- Wiles, Fermat, Four color map, Gdel, Icosahedron, Euler, BinomConvergence, Julia Set, Three apples, Cattle count, Yanghui triangle, Seki Kowa, Kronecker, Goldbach Letter: Wikipedia, Wikimedia
- Find X : popular
- Loto 6: www.takarakuji-official.jp
- graphs: TikX Example web site and self made
- music: TUG TEX Show Case
- Wepemnefret: http://euler.slu.edu/escher/index. php/History_and_Numbers

