1211 Logic and Mathematics

2. Lecture

Norbert PREINING

preining@jaist.ac.jp

www.preining.info/L211/index-en.html

2014-10-20

last weeks lecture From counting to the science of patterns

Important points

- ▶ fundamental theorem of arithmetic
- prime number theorem the frequency of prime number in the natural numbers is

$$\pi(n) \sim \frac{n}{\ln n}$$

► Goldbach Conjecture

Every even number bigger than 2 can be represented as the sum of two prime numbers.

► Completion:

subtraction: $\mathbb{N} \to \mathbb{Z}$

division: $\mathbb{Z} \to \mathbb{Q}$

root: $\mathbb{Q} \to \mathbb{A}$, $\mathbb{A} \to \mathbb{R}$, $\mathbb{R} \to \mathbb{C}$

Proof

From the dictionary ...

Evidence or argument establishing or helping to establish a fact or the truth of a statement.

Convince others of the correctness.

All kinds of proof types

- Proof by trivialization: 'such a trivial thing does not need a proof'
- proof by usefulness: 'it would be so good if this is true'
- proof by necessity: 'if this is not true, that would be the end'
- proof by intimidation: 'don't be stupid, it's true, obviously!'
- proof by (wrong) analogy: 'that looks a bit like this one, thus it's true'
- proof by intuition: 'I have the feeling it's true'
- proof by authority: 'XXX has said it's true'

Last but not least . . .

proof by love: 'I got a ring from my lover, so . . . '

Mathematical proof

- confirm the correctness
- deduction/inference
 - from axioms
 - from already proven theorems or lemmas
 - each single step can be checked
- written so that it can be understood

Mathematical truth and falsity

true

A proposition is either true or false. (No half-true!)

Connecting propositions

```
\lor or (disjunction) A \lor B
\land and (conjunction) A \land B
\rightarrow implies (implication) A \rightarrow B
\neg not (negation) \neg A
```

necessary, sufficient, and both

necessary A is a necessary condition for B

 $x^2 = 1$ is necessary for x = 1

 $B \rightarrow A$

sufficient A is a sufficient condition for B

x = 1 is sufficient for $x^2 = 1$

 $A \rightarrow B$

both necessary and sufficient condition

 $A \leftrightarrow B$

Truth tables

	basic values	
true	1	
false	0	

Α	$\mid \neg A$	
0	1	
1	0	

Truth tables 2

A	В	$A \vee B$		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Α	В	$A \wedge B$		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

В	$A \rightarrow B$
0	1
1	1
0	0
1	1
	1

Truth tables 3

	Α	В	$A \leftrightarrow B$
	0	0	1
	0	1	0
	1	0	0
	1	1	1

Truth table exercise

$$(P \lor Q) \to R$$

Quantifiers

universal quantifier

symbol: ∀ 'for all'...

Example: $\forall n \in \mathbb{N} : P(x)$

For all natural number n, P(n) (holds)

existential quantifier

symbol: ∃ 'exists'...

example: $\exists n \in \mathbb{N} : P(x)$

There is a natural number n such that P(n) (holds).

Other operators: \exists !

Relation between quantifiers

negation of 'for all
$$n, P(n)$$
' ...

$$\neg \forall n P(n)$$

becomes 'there is an n such that $\neg P(n)$ '

$$\neg \forall n P(n) \qquad \Leftrightarrow \qquad \exists n \neg P(n)$$

$$\neg \exists n P(n) \Leftrightarrow \forall n \neg P(n)$$

Proof methods

Direct proof

Theorem

If for two sets A and B we have that $A \subseteq B$ and $B \subseteq A$, then we also have A = B.

Proof

- ▶ (1) If $x \in A$, then due to $A \subseteq B$, also $x \in B$.
- ▶ By (1), all $x \in A$ are also $\in B$.
- ▶ (2) If $x \in B$, then due to $B \subseteq A$, also $x \in A$.
- ▶ By (2), all $x \in A$ are also $\in B$.
- ▶ By (1) and (2), we have A = B.

Direct proof

Theorem

$$(A \subseteq B) \land (B \subseteq A) \Rightarrow (A = B)$$

Proof

- ▶ (1) $x \in A \land A \subseteq B \Rightarrow x \in B$
- ▶ (2) $x \in B \land B \subseteq A \Rightarrow x \in A$
- \blacktriangleright (1) \land (2) \Rightarrow A = B

Proof by contraposition

Direct proof

$$\mathsf{Assumption} \implies \mathsf{Conclusion}$$

Assuming the Assumption, we proof the Conclusion.

Basic pattern of the contraposition

$$A \rightarrow B \qquad \Leftrightarrow \qquad \neg B \rightarrow \neg A$$

Assuming the negation of the conclusion, we prove the negation of the assumption.

Confirmation of the contraposition

A	В	$A \rightarrow B$	¬A	$\neg B$	$\mid \neg B \rightarrow \neg A$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	1	1	0	0	1

Example of contraposition

Theorem (*n* natural number)

If n^2 is even, then also n is even.

formula of the contraposition

If n is not even, then n^2 is also not even.

Proof

$$n$$
 is not even $n=2k+1$ is assumed
$$n^2=(2k+1)^2$$

$$n^2=4k^2+4k+1$$

$$n^2=2(2k^2+2k)+1$$
 thus n^2 is not even, too.

Proof by contradiction

basic pattern

If we can deduce a contradiction assuming A, then A is false.

Example

 $\sqrt{2}$ is an irrational number.

Proof

Assume $\sqrt{2}$ is a rational number . . .

Homework

Infinity of primes

The are infinitely many prime numbers.

Proof

Assume there are only finitely many primes, then ...

Summary

- ► Concept of proof in the society and in science is different
- ▶ Proofs go from axioms step by step
- there are various different proof methods

Exercise sheet

Wednesday lecture: Induction

Sources

 Ring: http: //www.fotocommunity.de/pc/pc/display/29133067