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Definition of (Commutative) Rings

A ring is a set 𝑅 with two binary operations + and ⋅ and one unary
operation −, satisfying the following axioms:

𝑅 is an abelian group wrt +
associative: (𝑎 + 𝑏) + 𝑐 = 𝑎+ (𝑏+ 𝑐)
commutative: 𝑎+ 𝑏 = 𝑏+𝑎
additive identity: there is 0 ∈ 𝑅 such that 𝑎+0 = 𝑎 for all 𝑎 ∈ 𝑅
additive inverse: 𝑎+ (−𝑎) = 0 for all 𝑎 ∈ 𝑅

𝑅 is a (commutative) monoid wrt ⋅
associative: 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐
(commutative: 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎)
multiplicative identity: there is 1 ∈ 𝑅 such that 𝑎 ⋅ 1 = 1 ⋅ 𝑎 = 𝑎
for all 𝑎 ∈ 𝑅

Distributivity of ⋅ wrt +
left distributivity: 𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐)
right distributivity: (𝑏 + 𝑐) ⋅ 𝑎 = (𝑏 ⋅ 𝑎) + (𝑐 ⋅ 𝑎)
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Examples of rings

ℤ

ℤ𝑛 modular arithmetic, example ℤ5 = {0̄, 1̄, 2̄, 3̄, 4̄}

2-2 matrices over the reals: M2(ℝ) = {( 𝑎 𝑏
𝑐 𝑑 )|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}

(Q: commutative?)

ℤ[1/𝑛] = {𝑎/𝑛𝑏|𝑎 ∈ ℤ,𝑏 ∈ ℕ}

𝔽[𝑋] polynomials over a ring 𝔽:

𝔽[𝑋] = 𝑝0 +𝑝1𝑋1 +⋯+𝑝𝑚𝑋𝑚

such that 𝑝𝑖 are from the ring 𝔽 and 𝑋𝑘 are formal expressions
with 𝑋0 = 1 and 𝑋𝑛𝑋𝑚 = 𝑋𝑛+𝑚.
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Specifying (commutative) rings in CafeOBJ
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First step: operators!
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Where are the sorts and operators for
rings?

A ring is a set 𝑅 with two binary operations + and ⋅ and one unary
operation −, satisfying the following axioms:
𝑅 is an abelian group wrt +

associative: (𝑎 + 𝑏) + 𝑐 = 𝑎+ (𝑏+ 𝑐)
commutative: 𝑎+ 𝑏 = 𝑏+𝑎
additive identity: there is 0 ∈ 𝑅 such that 𝑎+0 = 𝑎 for all 𝑎 ∈ 𝑅
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Sorts and operators for rings

(to be filled in during class)
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Sorts and operator definitions in CafeOBJ

Sort(s)
[ Elem ]

Operators
op 0r : -> Elem .
op 1r : -> Elem .
op _ +r _ : Elem Elem -> Elem .
op _ *r _ : Elem Elem -> Elem .
op -r _ : Elem -> Elem .

}
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Axioms (equations) for rings

Axioms for +, commutativity

eq a +r b = b +r a .

Q: What will happen?

mod* RING {
[ Elem ]
op _ +r _ : Elem Elem -> Elem .
eq a:Elem +r b:Elem = b + a .

}
open RING .
red a:Elem +r b:Elem .

What is the problem?
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Operator attributes

To overcome the infinite rewrite problem laid out above, operator
attributes are available:
Details see CafeOBJ> ? operator attr
Possible attributes:

commutative (or comm) – declares the operator as being
commutative (𝑎+ 𝑏 = 𝑏+𝑎)

associative (or assoc) – same for associative

l-assoc and r-assoc – for left and right associativity

idempotence (or idem) – idempotency law 𝑎⋆ 𝑎 = 𝑎

constr – declares the operator as constructor

id: <const> defines an identity for the operator

prec: <int> – precedence of the operator in the parsing
(‘binding strength – the smaller the stronger’)

strat ( <int list> ) – evaluation strategy
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How to use operator attribute?

Instead of writing out the commutativity law, we specify the
attribute!

mod* RING {
[ Elem ]
op _ +r _ : Elem Elem -> Elem { comm } .

}
open RING .
red a:Elem +r b:Elem .

Q: What will happen? – nothing

-- reduce in %RING : (a +r b):Elem
(a +r b):Elem
(0.0000 sec for parse, 0.0000 sec for 0 rewrites + 0 matches)
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Abelian group

𝑅 is an abelian group wrt +
associative: (𝑎 + 𝑏) + 𝑐 = 𝑎+ (𝑏+ 𝑐)
commutative: 𝑎+ 𝑏 = 𝑏+𝑎
additive identity: there is 0 ∈ 𝑅 such that 𝑎+0 = 𝑎 for all 𝑎 ∈ 𝑅
additive inverse: 𝑎+ (−𝑎) = 0 for all 𝑎 ∈ 𝑅

mod* RING {
[ Elem ]
op 0r : -> Elem
op _ +r _ : Elem Elem -> Elem { comm assoc id: 0r }
op -r _ : Elem -> Elem
eq (A:Elem +r (- A)) = 0r .
}
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Does this suffice?

Do we need more equations to reduce/rewrite (all) terms?

open RING .
ops a b c : -> Elem .
red a +r ( c +r b ) +r (-r ( b +r a ) ) .

Q: What will happen?

%RING> red a +r ( c +r b ) +r (-r ( b +r a ) ) .
-- reduce in %RING : (a +r (c +r (b +r (-r (b +r a))))):Elem
(c):Elem
(0.0040 sec for parse, 0.0000 sec for 1 rewrites + 15 matches

)

Q: Why
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Tracing rewriting

%RING> set trace on
%RING> red a +r ( c +r b ) +r (-r ( b +r a ) ) .
-- reduce in %RING : (a +r (c +r (b +r (-r (b +r a))))):Elem
1>[1] rule: eq (AC:?Elem +r (A:Elem +r (-r A))) = (AC +r 0r)

{ A:Elem |-> (a +r b), AC:?Elem |-> c }
1<[1] (a +r (b +r ((-r (a +r b)) +r c))):Elem --> (c):Elem

(c):Elem
(0.0000 sec for parse, 0.0000 sec for 1 rewrites + 15 matches

)
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Commutative monoid and distributivity

𝑅 is a (commutative) monoid wrt ⋅
associative: 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐
(commutative: 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎)
multiplicative identity: there is 1 ∈ 𝑅 such that 𝑎 ⋅ 1 = 1 ⋅ 𝑎 = 𝑎
for all 𝑎 ∈ 𝑅

op 1r : -> Elem { constr }
op _*r_ : Elem Elem -> Elem { comm assoc id: 1r }

Distributivity of ⋅ wrt +
left distributivity: 𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐)
right distributivity: (𝑏 + 𝑐) ⋅ 𝑎 = (𝑏 ⋅ 𝑎) + (𝑐 ⋅ 𝑎)

vars A B C : Elem .
eq: (A *r (B +r C)) = (A *r B) +r (A *r C) .
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Necessary lemma for rings

Lemma ∀𝑎 ∈ 𝑅 ∶ 𝑎 ⋅ 0 = 0 ⋅ 𝑎 = 0

In CafeOBJ
%CRING> red a:Elem *r 0r .
-- reduce in %CRING : (a *r 0r):Elem
(0r *r a):Elem
%CRING>

Proof 𝑎 ⋅ 0 = 𝑎 ⋅ 0 + 𝑎 ⋅ 0 − 𝑎 ⋅ 0
= 𝑎 ⋅ (0 + 0) − 𝑎 ⋅ 0
= 𝑎 ⋅ 0 − 𝑎 ⋅ 0
= 0

Additional axiom/equation
eq a:Elem *r 0r = 0r .
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Adding binary minus and equality

To simply be able to write 𝑎− 𝑏 instead of 𝑎+ (−𝑏) we introduce a
binary minus:

op _-r_ : Elem Elem -> Elem
eq (A:Elem -r B:Elem) = ( A +r (-r B) ) .

For equality we use reducability as equality

eq (A:Elem = B:Elem) = (A == B) .
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Rewrite rules for unary minus

We need to give additional rewrite rules for unary minus to decide
equations. We settle on the following normal form:

minus are pushed into additions
minus are pulled outside of multiplications

eq (-r (A:Elem +r B:Elem)) = (-r A) +r (-r B) .
eq (-r A:Elem) *r B:Elem = -r (A *r B) .
eq (-r (-r A:Elem)) = A .
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Putting it all together

mod* CRING {
[ Elem ]
op 0r : -> Elem { constr }
op 1r : -> Elem { constr }
op _ +r _ : Elem Elem -> Elem { comm assoc id: 0r prec: 33 }

.
op -r _ : Elem -> Elem { prec: 32 } .
op _ -r _ : Elem Elem -> Elem { prec: 32 } .
op _ *r _ : Elem Elem -> Elem { comm assoc id: 1r prec: 31 }

.

eq ( A:Elem -r B:Elem ) = ( A +r ( -r B ) ) .
eq (A:Elem +r (-r A)) = 0r .
eq (A:Elem *r (B:Elem +r C:Elem)) = (A *r B) +r (A *r C) .
eq (A:Elem *r 0r) = 0r .
eq (A:Elem = B:Elem) = (A == B) .
eq (-r (A:Elem +r B:Elem)) = (-r A) +r (-r B) .
eq (-r A:Elem) *r B:Elem = -r (A *r B) .
eq (-r (-r A:Elem)) = A .

}
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Polynomials
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Going back to Polynomials

𝔽[𝑋] polynomials over a ring 𝔽:

𝔽[𝑋] = 𝑝0 +𝑝1𝑋1 +⋯+𝑝𝑚𝑋𝑚

such that 𝑝𝑖 are from the ring 𝔽 and 𝑋𝑘 are formal expressions with
𝑋0 = 1 and 𝑋𝑛𝑋𝑚 = 𝑋𝑛+𝑚.

mod! POLYNOMIAL ( COEFF :: RING ) {
pr(INT)
pr(CRING * { ... }
[ Elem < Poly ]
op X^_ : Nat -> Poly
...

}
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Polynomials as ring

The polynomials form a ring, so instead of rewriting the set of
axioms for rings, we include the ring algebra and rename sorts and
operators:

pr(CRING * { sort Elem -> Poly,
op _+r_ -> _+p_,
op -r_ -> -p_,
op _-r_ -> _-p_,
op _*r_ -> _*p_,
op 0r -> 0p,
op 1r -> 1p })

WARNING Two instances of ring in the algebra of poynomials: one is
the ring of polynomials (where the operators are renamed from +r to
+p etc), and one is the ring of coefficients which is a parameter to the
module!
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Remaining properties (axioms) for
polynomials

Properties of the formal terms:

𝑋0 = 1
𝑋𝑛𝑋𝑚 = 𝑋𝑛+𝑚

𝑟𝑋𝑛 + 𝑠𝑋𝑛 = (𝑟+ 𝑠)𝑋𝑛 (plus extra rules for 𝑋𝑛 + 𝑠𝑋𝑛 etc)

Properties of the computations:
switch between polynomial and coefficient minus
identifications of identity elements
getting rid of superfluous 1
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Axioms for polynoms
eq (I1 *p I2) = (I1 *r I2) . --ring elem mult.
eq (IP *p 0r) = 0r . -- as with the ring
-- properties of the formal terms
eq ( X^ 0 ) = 1p .
eq ( ( X^ N ) *p ( X^ M ) ) = X^ ( N + M ) .
eq ( I1 *p ( X^ N ) ) +p ( I2 *p ( X^ N ) ) =

( I1 +r I2 ) *p ( X^ N ) .
-- switch - from poly to ring
eq -p (I *p IP1) = (-r I) *p IP1 .
-- special treatment of missing coeff
eq ( X^ N ) +p ( I2 *p ( X^ N ) ) =

( I2 +r 1r ) *p ( X^ N ) .
eq ( -p ( X^ N ) ) +p ( I2 *p ( X^ N ) ) =

( I2 -r 1r ) *p ( X^ N ) .
-- identification of identity elements
eq 1p = 1r .
eq 0p = 0r .
-- getting rid of unnecessary 1
eq (1r *p X^ N) = X^ N .
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Instantiating polynomials

We need views to instantiate polynomials - homomorphisms from
the actual algebra to the pattern algebra:

Example: view the integers as a CRING:

view INT-AS-CRING from CRING to INT {
sort Elem -> Int,
op 0r -> 0,
op 1r -> 1,
op _+r_ -> _+_,
op _*r_ -> _*_,
op -r_ -> -_,
op _-r_ -> _-_

}
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Playing around with polynoms

open POLYNOMIAL(COEFF <= INT-AS-CRING) .
red ( 3 *p X^ 2 ) +p ( 5 *p X^ 2 ) .
red 4 *p X^ 2 -p ( 2 *p X^ 2 ) .
red ( 3 *p X^ 1 *p 4 *p X^ 3 ) .
red ( 3 *p X^ 1 *p -4 *p X^ 3 ) .
red ( ( 3 *p X^ 2 +p X^ 1 +p 2 ) *p ( X^ 1 +p 1 ) ) .
red ( ( 3 *p X^ 2 +p X^ 1 +p 2 ) *p ( X^ 1 -p 1 ) ) .
close

Algebraic specification and verification with CafeOBJ [5pt]Part 4 – Exploiting AC and Hidden Sorts 27/55



Rational polynomials

view RAT-AS-CRING from CRING to RAT { ... }

open POLYNOMIAL(COEFF <= RAT-AS-CRING) .
red ( ( 3/2 *p X^ 2 +p X^ 1 +p 2/5 ) *p ( X^ 1 -p 3/2 ) ) .
red ( X^ 3 -p X^ 1 +p 5/3 ) *p ( X^ 2 +p 2/9 *p X^ 1 -p 7/3 )

.
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Summary and open questions (preliminary)

renaming of polynomial operators
nice idea, but breaks rewriting at the moment due to infinite
loops

manual proof of 𝑎 ⋅ 0 = 0
inverse application of rules, mixture with AC?

completeness of the rewrite systems?

AC rewriting and overloading of operators – tricky!

mathematical practice and formal (absolutely) proofs are
different
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Lab time

The rank of a polynomial

𝑝 =
𝑛

∑
𝑘=0

𝑝𝑘𝑋𝑘

is the maximum of the exponents of non-zero terms, i.e.,

rank(𝑝) = max{𝑘 ∶ 𝑝𝑘 ≠ 0}

Assuming the specification of polynomials from the lecture given.
Define an operator and necessary equations so that CafeOBJ can
compute arbitrary ranks.
Example: In case in integer polynomials:

red rank ( 3 *p X^ 2 +p X^ 1 -p 4 ) .

should return 2 because 𝑝2 = 3 is the biggest non-zero coefficient.
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Lab time II

A vector space 𝑉 over a commutative ring 𝑅 is a set with two
operations, vector addition and scalar multiplication. The elements
of 𝑉 are called vectors, the elements of 𝑅 (the field) scalars. The
vector addition operators on two vectors, and the scalar
multiplication operates on a scalar and a vector. The operations
satisfy the following axioms:

vector addition is associative and commutative
there is an identity element for the vector addition
for every vector there is the additive inverse for the vector
addition
scalar multiplication and field multiplication are compatible (𝑎
and 𝑏 are scalars, 𝑣⃗ a vector): 𝑎(𝑏𝑣⃗) = (𝑎𝑏)𝑣⃗
the identity element of the field is multiplicative identity of the
scalar multiplication
scalar multiplication is distributive with respect to both scalar
addition (addition in the field) and vector addition, that is,
(𝑎 + 𝑏)𝑣⃗ = (𝑎𝑣⃗) + (𝑏𝑣⃗) and 𝑎(𝑣⃗ + 𝑤⃗) = (𝑎𝑣⃗) + (𝑎𝑤⃗) where 𝑎
and 𝑏 are scalars, and 𝑣⃗ and 𝑤⃗ are vectors.
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Lab time II cont

Give a parametrized (parameter is the commutative ring)
specification of vector spaces.
Example: With the view INT-AS-CRING from the lecture, the
following code

open VECTORSPACE(SCALAR <= INT-AS-CRING) .
red ( 3 * 2 * (4 + 3) *v (V:Vector +v W:Vector)) .

should give

((42 *v V) +v (42 *v W)):Vector

as output.
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Behavioral specification
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Example: flags in programming languages

Assume we want to specify an abstract notion of flags, that can be
realized in various ways (booleans, natural numbers, etc).

Necessary operations:
raise or set a flag
lower or clear a flag
change or switch a flag
check for a set flag

Required properties:
after raising a flag, checking it returns true
after lowering a flag, checking it returns false
after changing a flag, checking it returns the opposite

Consequences that should be obtained:
two times changing a flag returns it to the original state

Q: What do you think?

Algebraic specification and verification with CafeOBJ [5pt]Part 4 – Exploiting AC and Hidden Sorts 34/55



Example: flags in programming languages

Assume we want to specify an abstract notion of flags, that can be
realized in various ways (booleans, natural numbers, etc).
Necessary operations:

raise or set a flag
lower or clear a flag
change or switch a flag
check for a set flag

Required properties:
after raising a flag, checking it returns true
after lowering a flag, checking it returns false
after changing a flag, checking it returns the opposite

Consequences that should be obtained:
two times changing a flag returns it to the original state

Q: What do you think?

Algebraic specification and verification with CafeOBJ [5pt]Part 4 – Exploiting AC and Hidden Sorts 34/55



Example: flags in programming languages

Assume we want to specify an abstract notion of flags, that can be
realized in various ways (booleans, natural numbers, etc).
Necessary operations:

raise or set a flag
lower or clear a flag
change or switch a flag
check for a set flag

Required properties:
after raising a flag, checking it returns true
after lowering a flag, checking it returns false
after changing a flag, checking it returns the opposite

Consequences that should be obtained:
two times changing a flag returns it to the original state

Q: What do you think?

Algebraic specification and verification with CafeOBJ [5pt]Part 4 – Exploiting AC and Hidden Sorts 34/55



Example: flags in programming languages

Assume we want to specify an abstract notion of flags, that can be
realized in various ways (booleans, natural numbers, etc).
Necessary operations:

raise or set a flag
lower or clear a flag
change or switch a flag
check for a set flag

Required properties:

after raising a flag, checking it returns true
after lowering a flag, checking it returns false
after changing a flag, checking it returns the opposite

Consequences that should be obtained:
two times changing a flag returns it to the original state

Q: What do you think?

Algebraic specification and verification with CafeOBJ [5pt]Part 4 – Exploiting AC and Hidden Sorts 34/55



Example: flags in programming languages

Assume we want to specify an abstract notion of flags, that can be
realized in various ways (booleans, natural numbers, etc).
Necessary operations:

raise or set a flag
lower or clear a flag
change or switch a flag
check for a set flag

Required properties:
after raising a flag, checking it returns true
after lowering a flag, checking it returns false
after changing a flag, checking it returns the opposite

Consequences that should be obtained:
two times changing a flag returns it to the original state

Q: What do you think?

Algebraic specification and verification with CafeOBJ [5pt]Part 4 – Exploiting AC and Hidden Sorts 34/55



Example: flags in programming languages

Assume we want to specify an abstract notion of flags, that can be
realized in various ways (booleans, natural numbers, etc).
Necessary operations:

raise or set a flag
lower or clear a flag
change or switch a flag
check for a set flag

Required properties:
after raising a flag, checking it returns true
after lowering a flag, checking it returns false
after changing a flag, checking it returns the opposite

Consequences that should be obtained:
two times changing a flag returns it to the original state

Q: What do you think?

Algebraic specification and verification with CafeOBJ [5pt]Part 4 – Exploiting AC and Hidden Sorts 34/55



Example: flags in programming languages

Assume we want to specify an abstract notion of flags, that can be
realized in various ways (booleans, natural numbers, etc).
Necessary operations:

raise or set a flag
lower or clear a flag
change or switch a flag
check for a set flag

Required properties:
after raising a flag, checking it returns true
after lowering a flag, checking it returns false
after changing a flag, checking it returns the opposite

Consequences that should be obtained:
two times changing a flag returns it to the original state

Q: What do you think?

Algebraic specification and verification with CafeOBJ [5pt]Part 4 – Exploiting AC and Hidden Sorts 34/55



Possible implementation in CafeOBJ

mod* FLAG {
[ Flag ]
op raise _ : Flag -> Flag .
op lower _ : Flag -> Flag .
op change _ : Flag -> Flag .

op is-up?_ : Flag -> Bool .
eq is-up? raise F:Flag = true .
eq is-up? lower F:Flag = false .
eq is-up? change F:Flag = not is-up? F .

}
mod! FLAGIMPLEMENTATION ( X :: FLAG ) { }

What we expect is something like:
view FOOBAR-AS-FLAG from FLAG to FOOBAR { ... }
open FLAGIMPLEMENTATION(X <= FOOBAR-AS-FLAG) .
red change-foobar change-foobar F = F .

Q: What do you think?
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Boolean as flags

First implementation: Booleans

mod! BOOLFLAG {
pr(BOOL)
** operators to be used as representations
** for flags
op raise-bool _ : Bool -> Bool .
op lower-bool _ : Bool -> Bool .
op change-bool _ : Bool -> Bool .
op is-up?-bool _ : Bool -> Bool .

eq raise-bool F:Bool = true .
eq lower-bool F:Bool = false .
eq change-bool F:Bool = not F .
eq is-up?-bool X:Bool = X .

}

Looks fine – or?
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Using the implementation

Using an implementation means instantiating the flag
implementation module with an actual implementation, and
mapping the relevant operators.

view BOOL-AS-FLAG from FLAG to BOOLFLAG {
sort Flag -> Bool,
op raise_ -> raise-bool_ ,
op lower_ -> lower-bool_,
op change_ -> change-bool_,
op is-up?_ -> is-up?-bool_

}
open FLAGIMPLEMENTATION(X <= BOOL-AS-FLAG) .

Now let us check whether the double switch property holds:

red change-bool change-bool F:Bool = F .

Q: What do you think is the outcome?
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Are we happy with that?
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Another implementation: Natural
numbers

We want to implement flags via natural numbers, and somehow keep
track of costs of raising and lowering and changing.

Our intended operations and semantics are:
a flag is raised if the counter is even

raising the flag multiplies the counter by 2

lowering the flag multiplies the counter by 2 and adds 1

changing the flag adds 1

Q: Is this a ‘flag’ in our interpretation?
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Implementation in CafeOBJ

mod! PNATFLAG {
[ PNat ]
op s _ : PNat -> PNat .
op 0 : -> PNat .
...
eq (N:PNat = M:PNat) = (N == M) .
...
** operators to be used as representations
** for flags
op raise-pnat _ : PNat -> PNat .
op lower-pnat _ : PNat -> PNat .
op change-pnat _ : PNat -> PNat .
op is-up?-pnat _ : PNat -> Bool .

eq raise-pnat F:PNat = times2 F .
eq lower-pnat F:PNat = s times2 F .
eq change-pnat F:PNat = s F .
eq is-up?-pnat F:PNat = even F .

}
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And what about our double switch
property?

???

view PNAT-AS-FLAG from FLAG to PNATFLAG {
sort Flag -> PNat,
op raise_ -> raise-pnat_ ,
op lower_ -> lower-pnat_,
op change_ -> change-pnat_,
op is-up?_ -> is-up?-pnat_

}
open FLAGIMPLEMENTATION(X <= PNAT-AS-FLAG) .
red change-pnat change-pnat N:PNat = N .
close .
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What went wrong?
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Code-wise

set trace whole on
%FLAGIMPLEMENTATION(X <= PNAT-AS-FLAG)> -- reduce in %

FLAGIMPLEMENTATION(X <= PNAT-AS-FLAG) : ((change-pnat (
change-pnat N)) = N):Bool

[1]: ((change-pnat (change-pnat N)) = N):Bool
---> ((s (change-pnat N)) = N):Bool
[2]: ((s (change-pnat N)) = N):Bool
---> ((s (s N)) = N):Bool
[3]: ((s (s N)) = N):Bool
---> ((s (s N)) == N):Bool
[4]: ((s (s N)) == N):Bool
---> (false):Bool
(false):Bool
(0.0000 sec for parse, 0.0000 sec for 4 rewrites + 4 matches)

But are we interested in the actual value?
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What is of interest?

Are we interested in the actual value? – NO! Only in the

observation

whether the flag is raised or not.

In particular, this is the problem

eq (N = M) = (N == M) .

Definition of equality via ‘syntactic’/‘evaluation-style’ equality.

What we want is

eq (N = M) = (N and M behave equally) .

behavioral rewriting/algebra
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First behavioral specification
Standard
mod* FLAG {
[ Flag ]
op raise _ : Flag -> Flag .
op lower _ : Flag -> Flag .
op change _ : Flag -> Flag .
op is-up?_ : Flag -> Bool .

eq is-up? raise F:Flag = true .
eq is-up? lower F:Flag = false .
eq is-up? change F:Flag = not is-up? F .

}

Behaviour
mod* FLAG {
*[ Flag ]*
bop raise _ : Flag -> Flag .
bop lower _ : Flag -> Flag .
bop change _ : Flag -> Flag .
bop is-up? _ : Flag -> Bool .

beq is-up? raise F:Flag = true .
beq is-up? lower F:Flag = false .
beq is-up? change F:Flag = not is-up? F .

}

Changes
sort definition: *[ ... ]*

operator definition: bop

axiom definition: beq

and above all
semantics
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Running the code

What happens if we run this code through CafeOBJ:

...
If you are sure that the proof is correct,
you can add the following axiom(s):

ceq ceq (hs1:Flag =*= hs2:Flag) = true
if ((is-up? hs1) == (is-up? hs2)) .

done.

In normal words:

You can define a kind of equality via the observations is-up?.

=*= is the behavioral equality
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What happened behind the scenes?

The check of congruence comprises of the following:
the only operator with hidden sort Flag as input and a normal
sort as output Bool is is-up?

bop is-up? _ : Flag -> Bool .

check for each of the other operators (raise, lower, change)
whether the following holds:

ceq ( hs1:Flag =*= hs2:Flag ) = true
if ((is-up? hs1) == (is-up? hs2)) .

where hs1 and hs2 are terms starting with the respective
operators.

For example

ceq ( (raise f1:Flag) =*= (raise f2:Flag) ) = true
if ((is-up? (raise f1)) == (is-up? (raise f2))).
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What happened behind the scenes?

The check of congruence comprises of the following:
the only operator with hidden sort Flag as input and a normal
sort as output Bool is is-up?

bop is-up? _ : Flag -> Bool .

check for each of the other operators (raise, lower, change)
whether the following holds:

ceq ( hs1:Flag =*= hs2:Flag ) = true
if ((is-up? hs1) == (is-up? hs2)) .

where hs1 and hs2 are terms starting with the respective
operators.

For example

ceq ( (raise f1:Flag) =*= (raise f2:Flag) ) = true
if ((is-up? (raise f1)) == (is-up? (raise f2))).

Algebraic specification and verification with CafeOBJ [5pt]Part 4 – Exploiting AC and Hidden Sorts 47/55



What happened behind the scenes? – cont

If this check succeeds, one can add the defining equation as
suggested, or use

set accept =*= proof on

To see the proof carried out:

set verbose on
set trace whole on

Then we get:

** system already proved ”=*=” is a congruence of FLAG

>> adding axiom : ceq (hs1:Flag =*= hs2:Flag) = true
if ((is-up? hs1) == (is-up? hs2)) .

done.
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Hidden Booleans as flag implementation

Let us consider the first implementation of flags via Booleans. Since
we need to create an instantiation via a view, the sorts and operators
must agree between FLAG and the implementation. Thus, we need
something like hidden Booleans:
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Hidden Booleans (code)

mod* BOOLFLAG {
*[ HBool ]*
bops htrue hfalse : -> HBool .
** basic properties of Booleans
bop not _ : HBool -> HBool .
beq not htrue = hfalse .
beq not hfalse = htrue .
** operators for representation
bop raise-bool _ : HBool -> HBool .
bop lower-bool _ : HBool -> HBool .
bop change-bool _ : HBool -> HBool .
bop is-up?-bool _ : HBool -> Bool .
** as before
beq raise-bool F:HBool = htrue .
beq lower-bool F:HBool = hfalse .
beq change-bool F:HBool = not F .
beq is-up?-bool htrue = true .
beq is-up?-bool hfalse = false .
beq is-up?-bool not F:HBool = not is-up?-bool F .

}
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Instantiating

As before, we need a view to instantiate the FLAGIMPLEMENTATION:

view BOOL-AS-FLAG from FLAG to BOOLFLAG {
hsort Flag -> HBool,
bop raise_ -> raise-bool_ ,
bop lower_ -> lower-bool_,
bop change_ -> change-bool_,
bop is-up?_ -> is-up?-bool_

}
open FLAGTHEORY(X <= BOOL-AS-FLAG) .
red change-bool change-bool F:HBool =*= F .
close .

Well, as expected …
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What about the natural numbers?

Let us do the same for the natural numbers: First adapt them to
hidden sorts:

All as before, only the renaming to hidden counterparts, and a
changed definition of equality:

mod! HPNAT {
*[ HPNat ]*
bop s _ : HPNat -> HPNat .
bop 0 : -> HPNat .
bop even _ : HPNat -> Bool .
bop odd _ : HPNat -> Bool .

...
beq (N:HPNat = M:HPNat) = (N =*= M) .

...
}

CafeOBJ duly checks congruence …
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Congruence check for HPNAT

With the following operator definitions, which equalities do we have
to check under which conditions?

bop s _ : HPNat -> HPNat .
bop 0 : -> HPNat .
bop even _ : HPNat -> Bool .
bop odd _ : HPNat -> Bool .
bop times2 _ : HPNat -> HPNat .
bop raise-pnat _ : HPNat -> HPNat .
bop lower-pnat _ : HPNat -> HPNat .
bop change-pnat _ : HPNat -> HPNat .
bop is-up?-pnat _ : HPNat -> Bool .

Obervational operators?

Operators to be checked?

(to be filled in in class)
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Instantiation the flag

As before, we need a view to instantiate the FLAGIMPLEMENTATION:

view PNAT-AS-FLAG from FLAG to HPNAT {
hsort Flag -> HPNat,
bop raise_ -> raise-pnat_ ,
bop lower_ -> lower-pnat_,
bop change_ -> change-pnat_,
bop is-up?_ -> is-up?-pnat_

}
open FLAGTHEORY(X <= PNAT-AS-FLAG) .
red change-pnat change-pnat F:HPNat =*= F .

Q: What do you expect as outcome?
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Summary (Hidden Sorts)

behavioral specification allow for testing of ‘equality’ with
respect to a set of observables

congruence of mixed operators and hidden operators needs to
be ensured

very sensitive to signature changes

good for abstracting implementation details from intended
meaning

Allows us to see the first specification of flags as correct!
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