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Observational Transition Systems
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System specification with OTS

describe the system as state machine (automaton)

one state is a set of observations
describe the transitions of the system
describe initial states
find an invariant of transitions that guarantees the target
property
base case of induction

find a finite set of covering state descriptions
show for those that if a state is initial then the invariant property
holds

step case of induction
find again a finite set of covering state descriptions for the left
hand sides of the transitions
show that if the lhs of the transition satisfies the invariant
condition, then also the rhs.
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CloudSync
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CloudSync in images
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CloudSync in images
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CloudSync in images
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Specification

ClLabel: {idlecl,busy}

mod! CLLABEL {
[ClLabelLt < ClLabel]
ops idlecl busy : -> ClLabelLt {constr} .
eq (L1:ClLabelLt = L2:ClLabelLt) = (L1 == L2) .

}
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Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}

mod! PCLABEL {
[PcLabelLt < PcLabel]
ops idlepc gotvalue updated : -> PcLabelLt {constr} .
eq (L1:PcLabelLt = L2:PcLabelLt) = (L1 == L2) .

}
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Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ

mod! CLSTATE {
pr(PAIR(NAT, CLLABEL{sort Elt -> ClLabel})*{

sort Pair -> ClState, op fst -> fst.clstate,
op snd -> snd.clstate })

}
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Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ
PcState: PcLabel×ℕ×ℕ

mod! PCSTATE {
pr(3TUPLE(NAT, NAT,

PCLABEL{sort Elt -> PcLabel})*
{sort 3Tuple -> PcState})

}
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Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ
PcState: PcLabel×ℕ×ℕ
PcStates: MultiSet(PcState)

mod! PCSTATES {
pr(MULTISET(PCSTATE{sort Elt -> PcState})*

{sort MultiSet -> PcStates})
}
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Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ
PcState: PcLabel×ℕ×ℕ
PcStates: MultiSet(PcState)
State: ClState× PcStates

mod! STATE {
pr(PAIR(CLSTATE{sort Elt -> ClState},PCSTATES

{sort Elt -> PcStates})*{sort Pair -> State})
}
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Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value

mod! GETVALUE { pr(STATE)
trans[getvalue]:
<
< ClVal:Nat , idlecl > ,
( <<PcVal:Nat; OldClVal:Nat; idlepc>> S:PcStates)

> =>
<
< ClVal , busy > ,
( <<PcVal; ClVal; gotvalue>> S)

> .
}
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Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value

mod! UPDATE { pr(STATE)
trans[update]:
<
< ClVal:Nat , busy > ,
(<<PcVal:Nat;GotClVal:Nat;gotvalue>> S:PcStates)
> =>
if PcVal <= GotClVal then
< <ClVal,busy> ,(<<GotClVal;GotClVal;updated>> S)>

else
< <PcVal,busy> , (<< PcVal;PcVal;updated >> S) >

fi .
}
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Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value
GotoIdle: both PC and Cloud go back to idle

mod! GOTOIDLE {pr(STATE)
trans[gotoidle]:
<
< ClVal:Nat ,busy > ,
( <<PcVal:Nat;OldClVal:Nat;updated >> S:PcStates)
> =>
< <ClVal, idlecl> , ( <<PcVal; OldClVal; idlepc>> S) > .

}
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mod! GOTOIDLE {pr(STATE)
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<
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CloudSync

Final specification is combination of the three transitions
(included modules are shared!)

mod! CLOUD {
pr(GETVALUE + UPDATE + GOTOIDLE)

}

Goal
If PC is in updated state, then the values of the Cloud and the PC
agree.
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Verification

Hoare style proof

1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)
- show for all states

∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)
where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29



Verification

Hoare style proof
1) show invariant for all initial states

2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)
- show for all states

∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)
where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29



Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)
- show for all states

∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)
where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29



Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool

- define a set of predicates
invariant ∶ State ↦ Bool

- show for all states
∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

- show for all states
∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)

where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29



Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool

- show for all states
∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

- show for all states
∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)

where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29



Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

- show for all states
∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)

where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29



Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)
- show for all states

∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)
where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29



How to prove ∀𝑆

Question
How to prove a statement like

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

?

Answer
Show it for any element of a covering set of state expressions.
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Covering set

most general: 𝑆 (state variable) – every state is an instance of 𝑆

more general {𝑆1,… ,𝑆𝑛} such that

∀𝑆∃𝑆𝑖 ∶ 𝑆 = 𝜎(𝑆𝑖)

i.e., every state term is an instance of one of the elements of the
covering set
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Proving with covering sets

Requirements for proving Hoare style
all transitions and predicates have to be applicable to terms of the
covering set

Covering set
ops s1 s2 s3 s4 t1 t2 t3 t4 : -> State .
ops M N K : -> Nat . var PCS : PcStates .
eq s1 = < < N, idlecl > , ( << M; K; idlepc >> PCS ) > .
eq s2 = < < N, idlecl > , ( << M; K; gotvalue >> PCS ) > .
eq s3 = < < N, idlecl > , ( << M; K; updated >> PCS ) > .
eq t1 = < < N, busy > , ( << M; K; idlepc >> PCS ) > .
eq t2 = < < N, busy > , ( << M; K; gotvalue >> PCS ) > .
eq t3 = < < N, busy > , ( << M; K; updated >> PCS ) > .
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Initial predicates

cl-is-idle: Cloud is initially idle

op cl-is-idle-name : -> PredName .
eq[cl-is-idle] : apply(cl-is-idle-name,S:State) =

( snd(fst(S)) = idlecl ) .
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Initial predicates

cl-is-idle: Cloud is initially idle
pcs-are-idle: all PCs are initially idle

op pcs-are-idle-name : -> PredName .
eq[pcs-are-idle] : apply(pcs-are-idle-name,S:State) =

zero-gotvalue(S) and zero-updated(S) .
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Initial predicates

cl-is-idle: Cloud is initially idle
pcs-are-idle: all PCs are initially idle
init: cl-is-idle & pcs-are-idle

mod! INITIALSTATE {
pr(INITPREDS)
op init-name : -> PredNameSeq .
eq init-name = cl-is-idle-name pcs-are-idle-name .
pred init : State .
eq init(S:State) = apply(init-name, S) .

}
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Invariant predicates

goal: all PCs in updated state agree with Cloud

if Cloud is idle then all PCs, too

only at most one PC is out of the idle state

all PCs in gotvalue state have their tmp value equal to the Cloud value

if Cloud is in busy state, then the value of the Cloud and the gotvalue
of the Pcs agree
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Hoare style in term reduction

initial step
red init(s1) implies invariant(s1) . -- OK
red init(s2) implies invariant(s2) . -- OK
red init(s3) implies invariant(s3) . -- OK
red init(t1) implies invariant(t1) . -- OK
red init(t2) implies invariant(t2) . -- OK
red init(t3) implies invariant(t3) . -- OK
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Hoare style in term reduction

induction step search predicate
op inv-condition : State State -> Bool .
eq inv-condition(S, SS) =

(not (
S =(*,1)=>+ SS
suchThat
(not

((invariant(S) implies invariant(SS))
== true)

)
)

) .
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Hoare style in term reduction

induction step
red inv-condition(s1, SS) . -- OK
red inv-condition(s2, SS) . -- OK
red inv-condition(s3, SS) . -- OK
red inv-condition(t1, SS) . -- OK
--> The following condition does not reduce directly
--> to true, we will deal with it later on
red inv-condition(t2, SS) . -- BAD
red inv-condition(t3, SS) . -- OK

Rest of the invariant condition with case distinctions
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