
Algebraic specification and verification with
CafeOBJ

Part 3 – CloudSync

Norbert Preining

ESSLLI 2016 Bozen, August 2016

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 1/29

Observational Transition Systems

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 2/29

System specification with OTS

describe the system as state machine (automaton)

one state is a set of observations
describe the transitions of the system
describe initial states
find an invariant of transitions that guarantees the target
property
base case of induction

find a finite set of covering state descriptions
show for those that if a state is initial then the invariant property
holds

step case of induction
find again a finite set of covering state descriptions for the left
hand sides of the transitions
show that if the lhs of the transition satisfies the invariant
condition, then also the rhs.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 3/29

System specification with OTS

describe the system as state machine (automaton)
one state is a set of observations
describe the transitions of the system
describe initial states

find an invariant of transitions that guarantees the target
property
base case of induction

find a finite set of covering state descriptions
show for those that if a state is initial then the invariant property
holds

step case of induction
find again a finite set of covering state descriptions for the left
hand sides of the transitions
show that if the lhs of the transition satisfies the invariant
condition, then also the rhs.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 3/29

System specification with OTS

describe the system as state machine (automaton)
one state is a set of observations
describe the transitions of the system
describe initial states
find an invariant of transitions that guarantees the target
property

base case of induction
find a finite set of covering state descriptions
show for those that if a state is initial then the invariant property
holds

step case of induction
find again a finite set of covering state descriptions for the left
hand sides of the transitions
show that if the lhs of the transition satisfies the invariant
condition, then also the rhs.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 3/29

System specification with OTS

describe the system as state machine (automaton)
one state is a set of observations
describe the transitions of the system
describe initial states
find an invariant of transitions that guarantees the target
property
base case of induction

find a finite set of covering state descriptions
show for those that if a state is initial then the invariant property
holds

step case of induction
find again a finite set of covering state descriptions for the left
hand sides of the transitions
show that if the lhs of the transition satisfies the invariant
condition, then also the rhs.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 3/29

System specification with OTS

describe the system as state machine (automaton)
one state is a set of observations
describe the transitions of the system
describe initial states
find an invariant of transitions that guarantees the target
property
base case of induction

find a finite set of covering state descriptions
show for those that if a state is initial then the invariant property
holds

step case of induction
find again a finite set of covering state descriptions for the left
hand sides of the transitions
show that if the lhs of the transition satisfies the invariant
condition, then also the rhs.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 3/29

CloudSync

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 4/29

CloudSync in images

Cl
ou

d state

stamp

idle

𝑛

pc
-1

state idle
stamp 𝑘
tmp 0

pc
-2

state idle
stamp 𝑙
tmp 0

…

pc
-𝑛

state idle
stamp 𝑚
tmp 0

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 5/29

CloudSync in images

Cl
ou

d state

stamp

busy

𝑛

pc
-1

state gotvalue

stamp 𝑘
tmp 𝑛

pc
-2

state idle
stamp 𝑙
tmp 0

…

pc
-𝑛

state idle
stamp 𝑚
tmp 0

transition: gotvalue

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 6/29

CloudSync in images

Cl
ou

d state

stamp

busy

𝑘

pc
-1

state update

stamp 𝑘
tmp 𝑘

pc
-2

state idle
stamp 𝑙
tmp 0

…

pc
-𝑛

state idle
stamp 𝑚
tmp 0

transition: update assuming 𝑘 ≥ 𝑛

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 7/29

CloudSync in images

Cl
ou

d state

stamp

idle

𝑘

pc
-1

state idle
stamp 𝑘
tmp 0

pc
-2

state idle
stamp 𝑙
tmp 0

…

pc
-𝑛

state idle
stamp 𝑚
tmp 0

transition: gotoidle

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 8/29

Specification

ClLabel: {idlecl,busy}

mod! CLLABEL {
[ClLabelLt < ClLabel]
ops idlecl busy : -> ClLabelLt {constr} .
eq (L1:ClLabelLt = L2:ClLabelLt) = (L1 == L2) .

}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 9/29

Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}

mod! PCLABEL {
[PcLabelLt < PcLabel]
ops idlepc gotvalue updated : -> PcLabelLt {constr} .
eq (L1:PcLabelLt = L2:PcLabelLt) = (L1 == L2) .

}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 10/29

Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ

mod! CLSTATE {
pr(PAIR(NAT, CLLABEL{sort Elt -> ClLabel})*{

sort Pair -> ClState, op fst -> fst.clstate,
op snd -> snd.clstate })

}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 11/29

Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ
PcState: PcLabel×ℕ×ℕ

mod! PCSTATE {
pr(3TUPLE(NAT, NAT,

PCLABEL{sort Elt -> PcLabel})*
{sort 3Tuple -> PcState})

}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 12/29

Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ
PcState: PcLabel×ℕ×ℕ
PcStates: MultiSet(PcState)

mod! PCSTATES {
pr(MULTISET(PCSTATE{sort Elt -> PcState})*

{sort MultiSet -> PcStates})
}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 13/29

Specification

ClLabel: {idlecl,busy}
PcLabel: {idlepc,gotvalue,updated}
ClState: ClLabel×ℕ
PcState: PcLabel×ℕ×ℕ
PcStates: MultiSet(PcState)
State: ClState× PcStates

mod! STATE {
pr(PAIR(CLSTATE{sort Elt -> ClState},PCSTATES

{sort Elt -> PcStates})*{sort Pair -> State})
}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 14/29

Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value

mod! GETVALUE { pr(STATE)
trans[getvalue]:
<
< ClVal:Nat , idlecl > ,
(<<PcVal:Nat; OldClVal:Nat; idlepc>> S:PcStates)

> =>
<
< ClVal , busy > ,
(<<PcVal; ClVal; gotvalue>> S)

> .
}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 15/29

Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value

mod! GETVALUE { pr(STATE)
trans[getvalue]:
<
< ClVal:Nat , idlecl > ,
(<<PcVal:Nat; OldClVal:Nat; idlepc>> S:PcStates)

> =>
<
< ClVal , busy > ,
(<<PcVal; ClVal; gotvalue>> S)

> .
}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 15/29

Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value

mod! UPDATE { pr(STATE)
trans[update]:
<
< ClVal:Nat , busy > ,
(<<PcVal:Nat;GotClVal:Nat;gotvalue>> S:PcStates)
> =>
if PcVal <= GotClVal then
< <ClVal,busy> ,(<<GotClVal;GotClVal;updated>> S)>

else
< <PcVal,busy> , (<< PcVal;PcVal;updated >> S) >

fi .
}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 16/29

Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value

mod! UPDATE { pr(STATE)
trans[update]:
<
< ClVal:Nat , busy > ,
(<<PcVal:Nat;GotClVal:Nat;gotvalue>> S:PcStates)
> =>
if PcVal <= GotClVal then
< <ClVal,busy> ,(<<GotClVal;GotClVal;updated>> S)>

else
< <PcVal,busy> , (<< PcVal;PcVal;updated >> S) >

fi .
}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 16/29

Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value
GotoIdle: both PC and Cloud go back to idle

mod! GOTOIDLE {pr(STATE)
trans[gotoidle]:
<
< ClVal:Nat ,busy > ,
(<<PcVal:Nat;OldClVal:Nat;updated >> S:PcStates)
> =>
< <ClVal, idlecl> , (<<PcVal; OldClVal; idlepc>> S) > .

}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 17/29

Transitions

GetValue: if PC and Cloud is idle, fetch Cloud value
Update: update Cloud/PC according to larger value
GotoIdle: both PC and Cloud go back to idle

mod! GOTOIDLE {pr(STATE)
trans[gotoidle]:
<
< ClVal:Nat ,busy > ,
(<<PcVal:Nat;OldClVal:Nat;updated >> S:PcStates)
> =>
< <ClVal, idlecl> , (<<PcVal; OldClVal; idlepc>> S) > .

}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 17/29

CloudSync

Final specification is combination of the three transitions
(included modules are shared!)

mod! CLOUD {
pr(GETVALUE + UPDATE + GOTOIDLE)

}

Goal
If PC is in updated state, then the values of the Cloud and the PC
agree.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 18/29

CloudSync

Final specification is combination of the three transitions
(included modules are shared!)

mod! CLOUD {
pr(GETVALUE + UPDATE + GOTOIDLE)

}

Goal

If PC is in updated state, then the values of the Cloud and the PC
agree.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 18/29

CloudSync

Final specification is combination of the three transitions
(included modules are shared!)

mod! CLOUD {
pr(GETVALUE + UPDATE + GOTOIDLE)

}

Goal
If PC is in updated state, then the values of the Cloud and the PC
agree.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 18/29

Verification

Hoare style proof

1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)
- show for all states

∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)
where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29

Verification

Hoare style proof
1) show invariant for all initial states

2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)
- show for all states

∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)
where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29

Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)
- show for all states

∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)
where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29

Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool

- define a set of predicates
invariant ∶ State ↦ Bool

- show for all states
∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

- show for all states
∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)

where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29

Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool

- show for all states
∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

- show for all states
∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)

where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29

Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

- show for all states
∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)

where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29

Verification

Hoare style proof
1) show invariant for all initial states
2) show that invariant is preserved over transitions

In details
- define a set of predicates

initial ∶ State ↦ Bool
- define a set of predicates

invariant ∶ State ↦ Bool
- show for all states

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)
- show for all states

∀𝑆 ∶ invariant(𝑆) → invariant(𝑆′)
where 𝑆 ↦ 𝑆′ is any transition

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 19/29

How to prove ∀𝑆

Question
How to prove a statement like

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

?

Answer
Show it for any element of a covering set of state expressions.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 20/29

How to prove ∀𝑆

Question
How to prove a statement like

∀𝑆 ∶ initial(𝑆) → invariant(𝑆)

?

Answer
Show it for any element of a covering set of state expressions.

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 20/29

Covering set

most general: 𝑆 (state variable) – every state is an instance of 𝑆

more general {𝑆1,… ,𝑆𝑛} such that

∀𝑆∃𝑆𝑖 ∶ 𝑆 = 𝜎(𝑆𝑖)

i.e., every state term is an instance of one of the elements of the
covering set

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 21/29

Covering set

most general: 𝑆 (state variable) – every state is an instance of 𝑆

more general {𝑆1,… ,𝑆𝑛} such that

∀𝑆∃𝑆𝑖 ∶ 𝑆 = 𝜎(𝑆𝑖)

i.e., every state term is an instance of one of the elements of the
covering set

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 21/29

Proving with covering sets

Requirements for proving Hoare style
all transitions and predicates have to be applicable to terms of the
covering set

Covering set
ops s1 s2 s3 s4 t1 t2 t3 t4 : -> State .
ops M N K : -> Nat . var PCS : PcStates .
eq s1 = < < N, idlecl > , (<< M; K; idlepc >> PCS) > .
eq s2 = < < N, idlecl > , (<< M; K; gotvalue >> PCS) > .
eq s3 = < < N, idlecl > , (<< M; K; updated >> PCS) > .
eq t1 = < < N, busy > , (<< M; K; idlepc >> PCS) > .
eq t2 = < < N, busy > , (<< M; K; gotvalue >> PCS) > .
eq t3 = < < N, busy > , (<< M; K; updated >> PCS) > .

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 22/29

Initial predicates

cl-is-idle: Cloud is initially idle

op cl-is-idle-name : -> PredName .
eq[cl-is-idle] : apply(cl-is-idle-name,S:State) =

(snd(fst(S)) = idlecl) .

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 23/29

Initial predicates

cl-is-idle: Cloud is initially idle
pcs-are-idle: all PCs are initially idle

op pcs-are-idle-name : -> PredName .
eq[pcs-are-idle] : apply(pcs-are-idle-name,S:State) =

zero-gotvalue(S) and zero-updated(S) .

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 24/29

Initial predicates

cl-is-idle: Cloud is initially idle
pcs-are-idle: all PCs are initially idle
init: cl-is-idle & pcs-are-idle

mod! INITIALSTATE {
pr(INITPREDS)
op init-name : -> PredNameSeq .
eq init-name = cl-is-idle-name pcs-are-idle-name .
pred init : State .
eq init(S:State) = apply(init-name, S) .

}

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 25/29

Invariant predicates

goal: all PCs in updated state agree with Cloud

if Cloud is idle then all PCs, too

only at most one PC is out of the idle state

all PCs in gotvalue state have their tmp value equal to the Cloud value

if Cloud is in busy state, then the value of the Cloud and the gotvalue
of the Pcs agree

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 26/29

Invariant predicates

goal: all PCs in updated state agree with Cloud

if Cloud is idle then all PCs, too

only at most one PC is out of the idle state

all PCs in gotvalue state have their tmp value equal to the Cloud value

if Cloud is in busy state, then the value of the Cloud and the gotvalue
of the Pcs agree

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 26/29

Hoare style in term reduction

initial step
red init(s1) implies invariant(s1) . -- OK
red init(s2) implies invariant(s2) . -- OK
red init(s3) implies invariant(s3) . -- OK
red init(t1) implies invariant(t1) . -- OK
red init(t2) implies invariant(t2) . -- OK
red init(t3) implies invariant(t3) . -- OK

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 27/29

Hoare style in term reduction

induction step search predicate
op inv-condition : State State -> Bool .
eq inv-condition(S, SS) =

(not (
S =(*,1)=>+ SS
suchThat
(not

((invariant(S) implies invariant(SS))
== true)

)
)

) .

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 28/29

Hoare style in term reduction

induction step
red inv-condition(s1, SS) . -- OK
red inv-condition(s2, SS) . -- OK
red inv-condition(s3, SS) . -- OK
red inv-condition(t1, SS) . -- OK
--> The following condition does not reduce directly
--> to true, we will deal with it later on
red inv-condition(t2, SS) . -- BAD
red inv-condition(t3, SS) . -- OK

Rest of the invariant condition with case distinctions

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 29/29

Hoare style in term reduction

induction step
red inv-condition(s1, SS) . -- OK
red inv-condition(s2, SS) . -- OK
red inv-condition(s3, SS) . -- OK
red inv-condition(t1, SS) . -- OK
--> The following condition does not reduce directly
--> to true, we will deal with it later on
red inv-condition(t2, SS) . -- BAD
red inv-condition(t3, SS) . -- OK

Rest of the invariant condition with case distinctions

Algebraic specification and verification with CafeOBJ [5pt]Part 3 – CloudSync 29/29

