
Algebraic specification and verification with
CafeOBJ

Part 1 – Introduction

Norbert Preining

ESSLLI 2016 Bozen, August 2016

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 1/44

Intro

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 2/44

Famous bugs

Therac-25 x-ray machine: over-exposition error (5 dead,
1985–1987)

Ariane 5 rocket, Flight 501 (overflow, 1996, $370 million!)

Mars Climate Orbiter: (lbf vs. N, 1999)

Intel Pentium F00F bug: planning error

Toyota’s Electronic Throttle Control System (ETCS): sudden
break accidents (2009–2011)

Heartbleed bug (OpenSSL, 2012-2014)

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 3/44

How to deal with bugs? – formal methods

post-coding
Analysis and verification of already developed program code

pre-coding
Analysis and verification of domains, models, specifications,
requirements, design, etc. – all before coding starts

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 4/44

Current status of formal methods

post-coding
model checking – big success, but limitations due to infinite to finite
state transformation

pre-coding
interactive theorem provers – acceptance of software
engineers/developers?

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 5/44

Current status of formal methods

post-coding
model checking – big success, but limitations due to infinite to finite
state transformation

pre-coding
interactive theorem provers – acceptance of software
engineers/developers?

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 5/44

Our Approach

reasonable blend of user and machine capabilities

allow intuitive modelling while preserving a rigorous formal
background

various levels of modelling – from high-level to hard-core

not fully automated – understanding of design and problems
necessary

CafeOBJ and proof scores

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 6/44

Our Approach

reasonable blend of user and machine capabilities

allow intuitive modelling while preserving a rigorous formal
background

various levels of modelling – from high-level to hard-core

not fully automated – understanding of design and problems
necessary

CafeOBJ and proof scores

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 6/44

Selling Points

rigid formal background

order-sorted equational theory

executable semantics via rewriting

high-level programming facilities (inheritance, templates and
instantiations, …)

freedom of “language” – syntactic elements can freely defined
(postfix, infix, mixfix; overloading, …)

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 7/44

Logical Foundation

Order sorted algebras
partial order of sorts

Hidden algebras
co-algebraic methods, infinite objects

Rewriting logic
transitions as first class objects

plus … executable
via rewriting engine

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 8/44

Logical Foundation

Order sorted algebras
partial order of sorts

Hidden algebras
co-algebraic methods, infinite objects

Rewriting logic
transitions as first class objects

plus … executable
via rewriting engine

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 8/44

Proof Score Approach

domain/design engineers construct proof scores hand-in-hand
with formal specification
proof scores are executable instructions
evaluating/computing/rewriting proof scores provides proofs of
the specification and related properties

proof by construction – proof by rewriting

model and describe a system
in order-sorted algebraic specification

construct proof score and
verify the specification by rewriting

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 9/44

Proof Score Approach

domain/design engineers construct proof scores hand-in-hand
with formal specification
proof scores are executable instructions
evaluating/computing/rewriting proof scores provides proofs of
the specification and related properties

proof by construction – proof by rewriting

model and describe a system
in order-sorted algebraic specification

construct proof score and
verify the specification by rewriting

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 9/44

Functional and Logic programming

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 10/44

Who has progammed here ...?

C, Pascal, Python, Java, Vala, Perl, …

versus

Lisp, Scheme, Prolog, Maude, Coq, CafeOBJ, …

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 11/44

Who has progammed here ...?

C, Pascal, Python, Java, Vala, Perl, …

versus

Lisp, Scheme, Prolog, Maude, Coq, CafeOBJ, …

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 11/44

Who has progammed here ...?

C, Pascal, Python, Java, Vala, Perl, …

versus

Lisp, Scheme, Prolog, Maude, Coq, CafeOBJ, …

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 11/44

Imperative versus Functional
programming

Imperative programming
mixture of what is computed and how it is computed
push a ; push b ; push c ; add ; mul

variables indicate data locations
sequence of states that is changing
result is the final state

Functional programming
separate what from how (to some degree)
variables indicate universal properties (for all 𝑥)
computation is evaluation of terms
result is the evaluation of the term

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 12/44

Imperative versus Functional
programming

Imperative programming
mixture of what is computed and how it is computed
push a ; push b ; push c ; add ; mul

variables indicate data locations
sequence of states that is changing
result is the final state

Functional programming
separate what from how (to some degree)
variables indicate universal properties (for all 𝑥)
computation is evaluation of terms
result is the evaluation of the term

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 12/44

Example: gcd

Imperative style
int gcd (int a, int b) {
int c;
while (a != 0) {
c = a ; a = b%a ; b = c ;

}
return b;

}

Here we describe a procedure that computes a result.

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 13/44

Example: gcd

Functional style
open NAT .
op gcd : Nat Nat -> Nat .
var a : Nat . var b : NzNat .
eq gcd(0,a) = a .
eq gcd(b,a) = gcd(a rem b, b) .
reduce gcd(12, 8) .

close NAT .

Here we describe mathematical properties of the function to be
computed.

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 14/44

(Abstract) Data Types

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 15/44

Data types

Traditional view
Mathematics: set

𝑆 = int× char = {(𝑎,𝑏)|𝑎 ∈ int∧𝑏 ∈ char}

Programming: structs

struct S {
int a;
char b

}

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 16/44

Data types

Modern view
Mathematics: algebra

𝑇 = (𝑆, fst ∶ 𝑆 → int, snd ∶ 𝑆 → char)
= (int× char, 𝜆(𝑎, 𝑏).𝑎, 𝜆(𝑎,𝑏).𝑏)

Programming:

mod S {
protect(INT + 2TUPLES)
...
ops fst snd : 2Tuple -> Int .
eq fst(<< a ; b >>) = a .
eq snd(<< a ; b >>) = b .

}

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 17/44

Data types (cont)

specification Company X needs a program that does the following
things:

if the customer requests foo, assign him a slot
if all slots are consumed, put the customer into a
waiting loop and give him a slot as soon as one
becomes free
if the customer is finished, free the slot

implementation first-in-first-out queues
Q How do we verify that the program matches the specification?

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 18/44

Data types (cont)

specification Company X needs a program that does the following
things:

if the customer requests foo, assign him a slot
if all slots are consumed, put the customer into a
waiting loop and give him a slot as soon as one
becomes free
if the customer is finished, free the slot

implementation first-in-first-out queues

Q How do we verify that the program matches the specification?

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 18/44

Data types (cont)

specification Company X needs a program that does the following
things:

if the customer requests foo, assign him a slot
if all slots are consumed, put the customer into a
waiting loop and give him a slot as soon as one
becomes free
if the customer is finished, free the slot

implementation first-in-first-out queues
Q How do we verify that the program matches the specification?

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 18/44

Data types (cont)

specification a program that implements asymmetric encryption
implementation various key formats, hash algorithms, …

Q How do we make sure that the NSA does not interfere?

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 19/44

Data types (cont)

specification a program that implements asymmetric encryption
implementation various key formats, hash algorithms, …

Q How do we make sure that the NSA does not interfere?

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 19/44

Data types and implementations

More formally
datatype equivalence class of isomorphic Σ-algebras

(e.g., class of all Boolean algebras isomorphic to {⊤,⊥})
abstract data type class of Σ-algebras closed under isomorphims

(e.g., class of Boolean algebras that are either 2-valued
or 4-valued)

implementation is a (concrete) data type
concrete data representation
provide realizations of the methods/operations

specification is an abstract data type
allows for different implementations
no particular data representation

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 20/44

Data types and implementations

More formally
datatype equivalence class of isomorphic Σ-algebras

(e.g., class of all Boolean algebras isomorphic to {⊤,⊥})
abstract data type class of Σ-algebras closed under isomorphims

(e.g., class of Boolean algebras that are either 2-valued
or 4-valued)

implementation is a (concrete) data type
concrete data representation
provide realizations of the methods/operations

specification is an abstract data type
allows for different implementations
no particular data representation

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 20/44

(Algebraic) specification languages

programming languages describe the actual implementation
Verification needs an additional description language
for the specification.

specification languages describe both the specification as well as the
implementation
Verification can be carried out within the system.

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 21/44

CafeOBJ

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 22/44

CafeOBJ history, background, and
relatives

algebraic specification language based on equational theory
origin in CLEAR (Burstall and Goguen, early 70s) and OBJ
language (Goguen et at., 70-80s SRI and UCI San Diego)
OBJ2 (Futatsugi, Goguen, Jouannaud, Meseguer at UCI San Diego,
1984) – based on Horn logic, sub-sorts, parametrized modules,
…
OBJ3 (Claude-Kirchner), Maude (Meseguer, full Horn logic)
formal background based on rewrite logic, initial semantics, and
institutions
similar but unrelated languages: Coq (Jouannaud, based on
Marin-Löf’s type theory)

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 23/44

Examples specifications

classical mutual exclusion protocols (QLock)

simplified cloud protocol

real time algorithms (Fischer’s mutual exclusion protocol)

railway signaling systems

authentication protocols (NSLPK, STS, Otway-Rees)

key secrecy PACE protocol (German passport)

e-commerce protocols (SET – practical sized 60000loc)

UML semantics

formal fault tree analysis

secure workflow models

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 24/44

Availability

http://cafeobj.org

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 25/44

http://cafeobj.org

http://cafeobj.org

Available pages
Home: Welcome and latest news

Support & Contact: mailing list, bug tracker, email

Download & Install: source, binary, installation instructions

Documentation: reference manual, user manual, some other
documents
Sub-pages: Tutorials, examples, reference manual wiki

Personnel: list of people

Recent posts: list of all recent posts

Links: some links

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 26/44

http://cafeobj.org

Getting information

Contact
info@cafeobj.org

Mailing list
users@cafeobj.org
Registration at: https://cafeobj.org/mailman/listinfo/users

Reference wiki
Reference manual split into Wiki pages

After logging in (various options): ability to change documentation,
add entries, clarify, add examples

Bug tracker
If you find a bug, or have a feature request:
http://tracker.cafeobj.org/

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 27/44

info@cafeobj.org
users@cafeobj.org
https://cafeobj.org/mailman/listinfo/users
http://tracker.cafeobj.org/

Getting information

Contact
info@cafeobj.org

Mailing list
users@cafeobj.org
Registration at: https://cafeobj.org/mailman/listinfo/users

Reference wiki
Reference manual split into Wiki pages

After logging in (various options): ability to change documentation,
add entries, clarify, add examples

Bug tracker
If you find a bug, or have a feature request:
http://tracker.cafeobj.org/

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 27/44

info@cafeobj.org
users@cafeobj.org
https://cafeobj.org/mailman/listinfo/users
http://tracker.cafeobj.org/

Getting information

Contact
info@cafeobj.org

Mailing list
users@cafeobj.org
Registration at: https://cafeobj.org/mailman/listinfo/users

Reference wiki
Reference manual split into Wiki pages

After logging in (various options): ability to change documentation,
add entries, clarify, add examples

Bug tracker
If you find a bug, or have a feature request:
http://tracker.cafeobj.org/

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 27/44

info@cafeobj.org
users@cafeobj.org
https://cafeobj.org/mailman/listinfo/users
http://tracker.cafeobj.org/

Algebraic semantics – the CafeOBJ Cube

MSA RWL

OSA OSRWL

HA HRWL

HOSA HOSRWL

M = many
S = sorted
O = order
H = hidden
A = algebra
RWL = rewriting logic

Logical systems and morphisms are formalised as institutions and
institution morphism

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 28/44

What is CafeOBJ

Algebraic specification language
Logic foundation:

order sorted algebra
co-algebra, hidden algebra
rewriting logic

Verification/Programming language
Executable semantics

equational theory
rewriting engine (conditional, order-sorted, AC)
module system
parametrized modules
inheritance (module reuse)
completely free syntax (prefix, postfix, infix, mixfix)

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 29/44

What is CafeOBJ

Algebraic specification language
Logic foundation:

order sorted algebra
co-algebra, hidden algebra
rewriting logic

Verification/Programming language
Executable semantics

equational theory
rewriting engine (conditional, order-sorted, AC)
module system
parametrized modules
inheritance (module reuse)
completely free syntax (prefix, postfix, infix, mixfix)

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 29/44

Computational semantics

equational theory

axioms are directed

order-sorted rewriting

CafeOBJ as programming language
module system

parametrized modules

inheritance

completely free syntax

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 30/44

Computational semantics

equational theory

axioms are directed

order-sorted rewriting

CafeOBJ as programming language
module system

parametrized modules

inheritance

completely free syntax

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 30/44

Computational semantics

equational theory

axioms are directed

order-sorted rewriting

CafeOBJ as programming language
module system

parametrized modules

inheritance

completely free syntax

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 30/44

CafeOBJ basics

Term rewriting

append(nil,ys) → ys

append(𝑥 ∶ xs,ys) → 𝑥 ∶ append(xs,ys)

e.g.

append(1 ∶ 2 ∶ 3 ∶ nil,4 ∶ 5 ∶ nil) → 1 ∶ append(2 ∶ 3 ∶ nil,4 ∶ 5 ∶ nil)
→ 1 ∶ 2 ∶ append(3 ∶ nil,4 ∶ 5 ∶ nil)
→ 1 ∶ 2 ∶ 3 ∶ append(nil,4 ∶ 5 ∶ nil)
→ 1 ∶ 2 ∶ 3 ∶ 4 ∶ 5 ∶ nil

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 31/44

CafeOBJ basics

Term rewriting

append(nil,ys) → ys

append(𝑥 ∶ xs,ys) → 𝑥 ∶ append(xs,ys)

e.g.

append(1 ∶ 2 ∶ 3 ∶ nil,4 ∶ 5 ∶ nil) → 1 ∶ append(2 ∶ 3 ∶ nil,4 ∶ 5 ∶ nil)
→ 1 ∶ 2 ∶ append(3 ∶ nil,4 ∶ 5 ∶ nil)
→ 1 ∶ 2 ∶ 3 ∶ append(nil,4 ∶ 5 ∶ nil)
→ 1 ∶ 2 ∶ 3 ∶ 4 ∶ 5 ∶ nil

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 31/44

CafeOBJ basics

Sorts and order
arbitrary sorts (distinct universes)
[sort1 sort2 sort3 ...]

may be partially ordered, order is set inclusion
[Nat < Int < Rat, Int < Float]

operator overloading depending of type (domain/codomain)
inheritance
op f : Int -> Int
works also for Nat.
strictly typed language
f(X:Float)
does not work out

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 32/44

CafeOBJ basics – osa

order signature (𝑆, 𝐹) such that
𝑆 is a set of sorts (sort names)
𝐹 set of operations of the form 𝑓 ∶ 𝑠1 ×…×𝑠𝑘 → 𝑠

𝑠1, …, 𝑠𝑘, 𝑠 are sorts
operation name: 𝑓
argument sorts: 𝑠1 ×…× 𝑠𝑘
target sort: 𝑠
arity: 𝑠1 ×…× 𝑠𝑘 → 𝑠
If 𝑘 = 0 then it is a constant: 𝑐 ∶→ 𝑠 of sort 𝑠

order sorted signature (𝑆,≤,𝐹) such that
(𝑆, 𝐹) is a order signature
a partial ordering ≤ on 𝑆 such that monotonicity
condition holds: order in the argument sorts
implies order in the target sort.

order sorted algebra sets for sorts with proper order, operations
follow the sorts, monotonicity condition

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 33/44

CafeOBJ basics – osa

order signature (𝑆, 𝐹) such that
𝑆 is a set of sorts (sort names)
𝐹 set of operations of the form 𝑓 ∶ 𝑠1 ×…×𝑠𝑘 → 𝑠

𝑠1, …, 𝑠𝑘, 𝑠 are sorts
operation name: 𝑓
argument sorts: 𝑠1 ×…× 𝑠𝑘
target sort: 𝑠
arity: 𝑠1 ×…× 𝑠𝑘 → 𝑠
If 𝑘 = 0 then it is a constant: 𝑐 ∶→ 𝑠 of sort 𝑠

order sorted signature (𝑆,≤,𝐹) such that
(𝑆, 𝐹) is a order signature
a partial ordering ≤ on 𝑆 such that monotonicity
condition holds: order in the argument sorts
implies order in the target sort.

order sorted algebra sets for sorts with proper order, operations
follow the sorts, monotonicity condition

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 33/44

CafeOBJ basics – osa

order signature (𝑆, 𝐹) such that
𝑆 is a set of sorts (sort names)
𝐹 set of operations of the form 𝑓 ∶ 𝑠1 ×…×𝑠𝑘 → 𝑠

𝑠1, …, 𝑠𝑘, 𝑠 are sorts
operation name: 𝑓
argument sorts: 𝑠1 ×…× 𝑠𝑘
target sort: 𝑠
arity: 𝑠1 ×…× 𝑠𝑘 → 𝑠
If 𝑘 = 0 then it is a constant: 𝑐 ∶→ 𝑠 of sort 𝑠

order sorted signature (𝑆,≤,𝐹) such that
(𝑆, 𝐹) is a order signature
a partial ordering ≤ on 𝑆 such that monotonicity
condition holds: order in the argument sorts
implies order in the target sort.

order sorted algebra sets for sorts with proper order, operations
follow the sorts, monotonicity condition

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 33/44

Advantages of OSA

polymorphism (parametric, subsort) and overloading

error definition and handling via subsorts

multiple inheritance

operational semantics that executes equations as rewrite rules
(executable specifications)

rigorous model-theoretic semantics based on institutions

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 34/44

First steps in CafeOBJ

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 35/44

Starting CafeOBJ

$ cafeobj
-- loading standard prelude

-- CafeOBJ system Version 1.5.6(PigNose0.99,b3) --
built: 2016 Jan 20 Wed 14:12:49 GMT

prelude file: std.bin

2016 Jan 23 Sat 11:09:58 GMT
Type ? for help

-- Containing PigNose Extensions --

built on SBCL
1.3.1.debian

CafeOBJ>

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 36/44

Getting help

Documents
Reference manual, user manual, some specific manuals (CITP,
PigNose, mostly in Japanese)

Help system
CafeOBJ has a built-in documentation and help system, available
commands:

? – general help
?com <class> – shows available commands classified by <class>
(list of classes when no class is passed in)
? <name> gives the reference manual description of <name>
?ex <name> gives examples for <name>, if available
?ap <term> searches all available documentation strings for the
terms

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 37/44

Getting help

Documents
Reference manual, user manual, some specific manuals (CITP,
PigNose, mostly in Japanese)

Help system
CafeOBJ has a built-in documentation and help system, available
commands:

? – general help

?com <class> – shows available commands classified by <class>
(list of classes when no class is passed in)
? <name> gives the reference manual description of <name>
?ex <name> gives examples for <name>, if available
?ap <term> searches all available documentation strings for the
terms

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 37/44

Getting help

Documents
Reference manual, user manual, some specific manuals (CITP,
PigNose, mostly in Japanese)

Help system
CafeOBJ has a built-in documentation and help system, available
commands:

? – general help
?com <class> – shows available commands classified by <class>
(list of classes when no class is passed in)

? <name> gives the reference manual description of <name>
?ex <name> gives examples for <name>, if available
?ap <term> searches all available documentation strings for the
terms

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 37/44

Getting help

Documents
Reference manual, user manual, some specific manuals (CITP,
PigNose, mostly in Japanese)

Help system
CafeOBJ has a built-in documentation and help system, available
commands:

? – general help
?com <class> – shows available commands classified by <class>
(list of classes when no class is passed in)
? <name> gives the reference manual description of <name>

?ex <name> gives examples for <name>, if available
?ap <term> searches all available documentation strings for the
terms

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 37/44

Getting help

Documents
Reference manual, user manual, some specific manuals (CITP,
PigNose, mostly in Japanese)

Help system
CafeOBJ has a built-in documentation and help system, available
commands:

? – general help
?com <class> – shows available commands classified by <class>
(list of classes when no class is passed in)
? <name> gives the reference manual description of <name>
?ex <name> gives examples for <name>, if available

?ap <term> searches all available documentation strings for the
terms

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 37/44

Getting help

Documents
Reference manual, user manual, some specific manuals (CITP,
PigNose, mostly in Japanese)

Help system
CafeOBJ has a built-in documentation and help system, available
commands:

? – general help
?com <class> – shows available commands classified by <class>
(list of classes when no class is passed in)
? <name> gives the reference manual description of <name>
?ex <name> gives examples for <name>, if available
?ap <term> searches all available documentation strings for the
terms

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 37/44

Getting help

Documents
Reference manual, user manual, some specific manuals (CITP,
PigNose, mostly in Japanese)

Help system
CafeOBJ has a built-in documentation and help system, available
commands:

? – general help
?com <class> – shows available commands classified by <class>
(list of classes when no class is passed in)
? <name> gives the reference manual description of <name>
?ex <name> gives examples for <name>, if available
?ap <term> searches all available documentation strings for the
terms

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 37/44

Simple computations

$ cafeobj

-- loading standard prelude
...
CafeOBJ> open NAT .
..
%NAT> red 10 * 20 + 30 .
-- reduce in %NAT : ((10 * 20) + 30):NzNat
(230):NzNat
(0.0000 sec for parse, 0.0000 sec for 2 rewrites + 2 matches)
%NAT> close
CafeOBJ> quit

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 38/44

Simple computations

$ cafeobj
-- loading standard prelude
...

CafeOBJ> open NAT .
..
%NAT> red 10 * 20 + 30 .
-- reduce in %NAT : ((10 * 20) + 30):NzNat
(230):NzNat
(0.0000 sec for parse, 0.0000 sec for 2 rewrites + 2 matches)
%NAT> close
CafeOBJ> quit

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 38/44

Simple computations

$ cafeobj
-- loading standard prelude
...
CafeOBJ>

open NAT .
..
%NAT> red 10 * 20 + 30 .
-- reduce in %NAT : ((10 * 20) + 30):NzNat
(230):NzNat
(0.0000 sec for parse, 0.0000 sec for 2 rewrites + 2 matches)
%NAT> close
CafeOBJ> quit

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 38/44

Simple computations

$ cafeobj
-- loading standard prelude
...
CafeOBJ> open NAT .
..
%NAT>

red 10 * 20 + 30 .
-- reduce in %NAT : ((10 * 20) + 30):NzNat
(230):NzNat
(0.0000 sec for parse, 0.0000 sec for 2 rewrites + 2 matches)
%NAT> close
CafeOBJ> quit

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 38/44

Simple computations

$ cafeobj
-- loading standard prelude
...
CafeOBJ> open NAT .
..
%NAT> red 10 * 20 + 30 .

-- reduce in %NAT : ((10 * 20) + 30):NzNat
(230):NzNat
(0.0000 sec for parse, 0.0000 sec for 2 rewrites + 2 matches)
%NAT> close
CafeOBJ> quit

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 38/44

Simple computations

$ cafeobj
-- loading standard prelude
...
CafeOBJ> open NAT .
..
%NAT> red 10 * 20 + 30 .
-- reduce in %NAT : ((10 * 20) + 30):NzNat
(230):NzNat
(0.0000 sec for parse, 0.0000 sec for 2 rewrites + 2 matches)
%NAT> close
CafeOBJ> quit

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 38/44

Function Declaration

mathematical definition

square ∶ ℕ → ℕ f ∶ ℕ×ℕ → ℕ
square(𝑎) = 𝑎∗ 𝑎 f(𝑎,𝑏) = 𝑎∗ 𝑎+ 𝑏∗ 𝑏

CafeOBJ:

1 open NAT .
2 vars A B : Nat
3 op square : Nat -> Nat .
4 eq square(A) = A * A .
5 op f : Nat Nat -> Nat .
6 eq f(A, B) = A * A + B * B .
7
8 red square(10) .
9 red f(10,20) .

10 close

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 39/44

Function Declaration

mathematical definition

square ∶ ℕ → ℕ f ∶ ℕ×ℕ → ℕ
square(𝑎) = 𝑎∗ 𝑎 f(𝑎,𝑏) = 𝑎∗ 𝑎+ 𝑏∗ 𝑏

CafeOBJ:

1 open NAT .
2 vars A B : Nat
3 op square : Nat -> Nat .
4 eq square(A) = A * A .
5 op f : Nat Nat -> Nat .
6 eq f(A, B) = A * A + B * B .
7
8 red square(10) .
9 red f(10,20) .

10 close

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 39/44

Recursion

mathematical definition

sum ∶ ℕ → ℕ

sum(𝑎) =
⎧
⎨⎩
0 if 𝑎 = 0
𝑎+ sum(𝑎 − 1) otherwise

CafeOBJ:
1 open NAT .
2 var A : Nat .
3 op sum : Nat -> Nat .
4 eq sum(A) = if A == 0 then 0 else A + sum(p A) fi
5
6 red sum(10) .
7 close

NOTE

p 𝐴 is 𝐴− 1, called predecessor function

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 40/44

Recursion

mathematical definition

sum ∶ ℕ → ℕ

sum(𝑎) =
⎧
⎨⎩
0 if 𝑎 = 0
𝑎+ sum(𝑎 − 1) otherwise

CafeOBJ:
1 open NAT .
2 var A : Nat .
3 op sum : Nat -> Nat .
4 eq sum(A) = if A == 0 then 0 else A + sum(p A) fi
5
6 red sum(10) .
7 close

NOTE

p 𝐴 is 𝐴− 1, called predecessor function

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 40/44

Recursion

mathematical definition

sum ∶ ℕ → ℕ

sum(𝑎) =
⎧
⎨⎩
0 if 𝑎 = 0
𝑎+ sum(𝑎 − 1) otherwise

CafeOBJ:
1 open NAT .
2 var A : Nat .
3 op sum : Nat -> Nat .
4 eq sum(A) = if A == 0 then 0 else A + sum(p A) fi
5
6 red sum(10) .
7 close

NOTE

p 𝐴 is 𝐴− 1, called predecessor function
Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 40/44

Conditional Equalities

mathematical definition

sum ∶ ℕ → ℕ

sum(𝑎) =
⎧
⎨⎩
0 if 𝑎 = 0
𝑎+ sum(𝑎 − 1) if 𝑎 > 0

code simplified by ceq and inline (on-the-fly) variable
declaration :Nat

1 open NAT .
2 op sum : Nat -> Nat .
3 eq sum(0) = 0 .
4 ceq sum(A:Nat) = A + sum(p A) if A > 0 .
5 red sum(10) .
6 close

CafeOBJ warns sort mismatch for p 𝐴:
[Warning]: axiom : ... contains error operators..* done.

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 41/44

Conditional Equalities

mathematical definition

sum ∶ ℕ → ℕ

sum(𝑎) =
⎧
⎨⎩
0 if 𝑎 = 0
𝑎+ sum(𝑎 − 1) if 𝑎 > 0

code simplified by ceq and inline (on-the-fly) variable
declaration :Nat

1 open NAT .
2 op sum : Nat -> Nat .
3 eq sum(0) = 0 .
4 ceq sum(A:Nat) = A + sum(p A) if A > 0 .
5 red sum(10) .
6 close

CafeOBJ warns sort mismatch for p 𝐴:
[Warning]: axiom : ... contains error operators..* done.

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 41/44

Conditional Equalities

mathematical definition

sum ∶ ℕ → ℕ

sum(𝑎) =
⎧
⎨⎩
0 if 𝑎 = 0
𝑎+ sum(𝑎 − 1) if 𝑎 > 0

code simplified by ceq and inline (on-the-fly) variable
declaration :Nat

1 open NAT .
2 op sum : Nat -> Nat .
3 eq sum(0) = 0 .
4 ceq sum(A:Nat) = A + sum(p A) if A > 0 .
5 red sum(10) .
6 close

CafeOBJ warns sort mismatch for p 𝐴:
[Warning]: axiom : ... contains error operators..* done.

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 41/44

Case Distinctions by Sorts

mathematical definition NB. ℕ = {0} ∪ {1, 2, 3,…}

sum ∶ ℕ → ℕ

sum(𝑎) =
⎧
⎨⎩
0 if 𝑎 = 0
𝑎+ sum(𝑎 − 1) if 𝑎 ∈ {1, 2, 3,…}

code simplified by subsort NzNat of Nat

1 open NAT .
2 op sum : Nat -> Nat .
3 eq sum(0) = 0 .
4 eq sum(A:NzNat) = A + sum(p A) .
5 red sum(10) .
6 close

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 42/44

Case Distinctions by Sorts

mathematical definition NB. ℕ = {0} ∪ {1, 2, 3,…}

sum ∶ ℕ → ℕ

sum(𝑎) =
⎧
⎨⎩
0 if 𝑎 = 0
𝑎+ sum(𝑎 − 1) if 𝑎 ∈ {1, 2, 3,…}

code simplified by subsort NzNat of Nat

1 open NAT .
2 op sum : Nat -> Nat .
3 eq sum(0) = 0 .
4 eq sum(A:NzNat) = A + sum(p A) .
5 red sum(10) .
6 close

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 42/44

Computational Model

program is set of (directed) equalities
execution is rewriting

1 open NAT .
2 op sum : Nat -> Nat .
3 eq sum(0) = 0 .
4 eq sum(N:NzNat) = N + sum(p N) .
5
6 red sum(3) .
7 close

sum(3) → 3+ sum(2)
→ 3+ (2 + sum(1))
→ 3+ (2 + (1 + sum(0))
→ 3+ (2 + (1 + 0))
→ ⋯
→ 6

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 43/44

Computational Model

program is set of (directed) equalities
execution is rewriting

1 open NAT .
2 op sum : Nat -> Nat .
3 eq sum(0) = 0 .
4 eq sum(N:NzNat) = N + sum(p N) .
5
6 red sum(3) .
7 close

sum(3) → 3+ sum(2)
→ 3+ (2 + sum(1))
→ 3+ (2 + (1 + sum(0))
→ 3+ (2 + (1 + 0))
→ ⋯
→ 6

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 43/44

Computational Model

program is set of (directed) equalities
execution is rewriting

1 open NAT .
2 op sum : Nat -> Nat .
3 eq sum(0) = 0 .
4 eq sum(N:NzNat) = N + sum(p N) .
5
6 red sum(3) .
7 close

sum(3) → 3+ sum(2)
→ 3+ (2 + sum(1))
→ 3+ (2 + (1 + sum(0))
→ 3+ (2 + (1 + 0))
→ ⋯
→ 6

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 43/44

Challenge

Implement the following functions in CafeOBJ
Implement factorial(𝑛) = 𝑛!

Implement fib(𝑛), 𝑛-th Fibonacci number, where fib(0) = 0,
fib(1) = 1, and fib(𝑛) = fib(𝑛− 2) + fib(𝑛− 1) otherwise

Algebraic specification and verification with CafeOBJ [5pt]Part 1 – Introduction 44/44

